python数据分析之单因素分析线性拟合及地理编码


Posted in Python onJune 25, 2022

一、单因素分析线性拟合

  • 功能:线性拟合,单因素分析,对散点图进行线性拟合,并放大散点图的局部位置
  • 输入:某个xlsx文件,包含'患者密度(人/10万人)'和'人口密度(人/平方千米)'两列
  • 输出:对这两列数据进行线性拟合,绘制散点

实现代码:

import pandas as pd
from pylab import mpl
from scipy import optimize
import numpy as np
import matplotlib.pyplot as plt
def f_1(x, A, B):
    return A*x + B
def draw_cure(file):
    data1=pd.read_excel(file)
    data1=pd.DataFrame(data1)
    hz=list(data1['患者密度(人/10万人)'])
    rk=list(data1['人口密度(人/平方千米)'])
    hz_gy=[]
    rk_gy=[]
    for i in hz:
        hz_gy.append((i-min(hz))/(max(hz)-min(hz)))
    for i in rk:
        rk_gy.append((i-min(rk))/(max(rk)-min(rk)))
    n=['玄武区','秦淮区','建邺区','鼓楼区','浦口区','栖霞区','雨花台区','江宁区','六合区','溧水区','高淳区',
       '锡山区','惠山区','滨湖区','梁溪区','新吴区','江阴市','宜兴市',
       '鼓楼区','云龙区','贾汪区','泉山区','铜山区','丰县','沛县','睢宁县','新沂市','邳州市',
       '天宁区','钟楼区','新北区','武进区','金坛区','溧阳市',
       '虎丘区','吴中区','相城区','姑苏区','吴江区','常熟市','张家港市','昆山市','太仓市',
       '崇川区','港闸区','通州区','如东县','启东市','如皋市','海门市','海安市',
       '连云区','海州区','赣榆区','东海县','灌云县','灌南县',
       '淮安区','淮阴区','清江浦区','洪泽区','涟水县','盱眙县','金湖县',
       '亭湖区','盐都区','大丰区','响水县','滨海县','阜宁县','射阳县','建湖县','东台市',
       '广陵区','邗江区','江都区','宝应县','仪征市','高邮市',
       '京口区','润州区','丹徒区','丹阳市','扬中市','句容市',
       '海陵区','高港区','姜堰区','兴化市','靖江市','泰兴市',
       '宿城区','宿豫区','沭阳县','泗阳县','泗洪县']
    mpl.rcParams['font.sans-serif'] = ['FangSong']
    plt.figure(figsize=(16,8),dpi=98)
    p1 = plt.subplot(121)
    p2 = plt.subplot(122)
    p1.scatter(rk_gy,hz_gy,c='r')
    p2.scatter(rk_gy,hz_gy,c='r')
    p1.axis([0.0,1.01,0.0,1.01])
    p1.set_ylabel("患者密度(人/10万人)",fontsize=13)
    p1.set_xlabel("人口密度(人/平方千米)",fontsize=13)
    p1.set_title("人口密度—患者密度相关性",fontsize=13)
    for i,txt in enumerate(n):
        p1.annotate(txt,(rk_gy[i],hz_gy[i]))
    A1, B1 = optimize.curve_fit(f_1, rk_gy, hz_gy)[0]
    x1 = np.arange(0, 1, 0.01)
    y1 = A1*x1 + B1
    p1.plot(x1, y1, "blue",label='一次拟合直线')
    x2 = np.arange(0, 1, 0.01)
    y2 = x2
    p1.plot(x2, y2,'g--',label='y=x')
    p1.legend(loc='upper left',fontsize=13)
    # # plot the box
    tx0 = 0;tx1 = 0.1;ty0 = 0;ty1 = 0.2
    sx = [tx0,tx1,tx1,tx0,tx0]
    sy = [ty0,ty0,ty1,ty1,ty0]
    p1.plot(sx,sy,"purple")
    p2.axis([0,0.1,0,0.2])
    p2.set_ylabel("患者密度(人/10万人)",fontsize=13)
    p2.set_xlabel("人口密度(人/平方千米)",fontsize=13)
    p2.set_title("人口密度—患者密度相关性",fontsize=13)
    for i,txt in enumerate(n):
        p2.annotate(txt,(rk_gy[i],hz_gy[i]))
    p2.plot(x1, y1, "blue",label='一次拟合直线')
    p2.plot(x2, y2,'g--',label='y=x')
    p2.legend(loc='upper left',fontsize=13)
    plt.show()
if __name__ == '__main__':
    draw_cure("F:\医学大数据课题\论文终稿修改\scientific report\返修\市区县相关分析 _2231.xls")

实现效果:

python数据分析之单因素分析线性拟合及地理编码

二、实现地理编码

  • 输入:中文地址信息,例如安徽为县天城镇都督村冲里18号
  • 输出:经纬度坐标,例如107.34799754989581 30.50483335424108
  • 功能:根据中文地址信息获取经纬度坐标

实现代码:

import json
from urllib.request import urlopen,quote
import xlrd
def readXLS(XLS_FILE,sheet0):
    rb= xlrd.open_workbook(XLS_FILE)
    rs= rb.sheets()[sheet0]
    return rs
def getlnglat(adress):
    url = 'http://api.map.baidu.com/geocoding/v3/?address='
    output = 'json'
    ak = 'fdi11GHN3GYVQdzVnUPuLSScYBVxYDFK'
    add = quote(adress)#使用quote进行编码 为了防止中文乱码
    # add=adress
    url2 = url + add + '&output=' + output + '&ak=' + ak
    req = urlopen(url2)
    res = req.read().decode()
    temp = json.loads(res)
    return temp
def getlatlon(sd_rs):
    nrows_sd_rs=sd_rs.nrows
    for i in range(4,nrows_sd_rs):
    # for i in range(4, 7):
        row=sd_rs.row_values(i)
        print(i,i/nrows_sd_rs)
        b = (row[11]+row[12]+row[9]).replace('#','号') # 第三列的地址
        print(b)
        try:
            lng = getlnglat(b)['result']['location']['lng']  # 获取经度并写入
            lat = getlnglat(b)['result']['location']['lat']  #获取纬度并写入
        except KeyError as e:
            lng=''
            lat=''
            f_err=open('f_err.txt','a')
            f_err.write(str(i)+'\t')
            f_err.close()
            print(e)
        print(lng,lat)
        f_latlon = open('f_latlon.txt', 'a')
        f_latlon.write(row[0]+'\t'+b+'\t'+str(lng)+'\t'+str(lat)+'\n')
        f_latlon.close()
if __name__=='__main__':
    # sle_xls_file = 'F:\医学大数据课题\江苏省SLE数据库(两次随访合并).xlsx'
    sle_xls_file = "F:\医学大数据课题\数据副本\江苏省SLE数据库(两次随访合并) - 副本.xlsx"
    sle_data_rs = readXLS(sle_xls_file, 1)
    getlatlon(sle_data_rs)

结果展示:

python数据分析之单因素分析线性拟合及地理编码

到此这篇关于python数据分析之单因素分析线性拟合及地理编码的文章就介绍到这了,更多相关python数据分析内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python栈类实例分析
Jun 15 Python
详解Python中使用base64模块来处理base64编码的方法
Jul 01 Python
Python使用sorted排序的方法小结
Jul 28 Python
Django 反向生成url实例详解
Jul 30 Python
Flask框架模板继承实现方法分析
Jul 31 Python
python使用梯度下降算法实现一个多线性回归
Mar 24 Python
解决jupyter notebook显示不全出现框框或者乱码问题
Apr 09 Python
Python操作Jira库常用方法解析
Apr 10 Python
一文轻松掌握python语言命名规范规则
Jun 18 Python
pycharm最新激活码有效期至2100年(亲测可用)
Feb 05 Python
Python生成九宫格图片的示例代码
Apr 14 Python
python 爬取华为应用市场评论
May 29 Python
python可视化分析绘制带趋势线的散点图和边缘直方图
基于Python编写一个监控CPU的应用系统
如何基于python实现单目三维重建详解
python如何读取和存储dict()与.json格式文件
Jun 25 #Python
python运行脚本文件的三种方法实例
Jun 25 #Python
如何利用python创作字符画
利用Python实时获取steam特惠游戏数据
You might like
PHP详解ASCII码对照表与字符转换
2011/12/05 PHP
那些年一起学习的PHP(一)
2012/03/21 PHP
php array_values 返回数组的所有值详解及实例
2016/11/12 PHP
php实现多维数组排序的方法示例
2017/03/23 PHP
对YUI扩展的Gird组件 Part-1
2007/03/10 Javascript
Ext JS 4官方文档之三 -- 类体系概述与实践
2012/12/16 Javascript
js解析json读取List中的实体对象示例
2014/03/11 Javascript
分享网页检测摇一摇实例代码
2016/01/14 Javascript
JavaScript必知必会(九)function 说起 闭包问题
2016/06/08 Javascript
JQuery ZTree使用方法详解
2017/01/07 Javascript
AngularJS监听路由变化的方法
2017/03/07 Javascript
JS身份证信息验证正则表达式
2017/06/12 Javascript
vue-cli + sass 的正确打开方式图文详解
2017/10/27 Javascript
angular4 共享服务在多个组件中数据通信的示例
2018/03/30 Javascript
微信小程序scroll-view横向滑动嵌套for循环的示例代码
2018/09/20 Javascript
PYTHON正则表达式 re模块使用说明
2011/05/19 Python
python标准日志模块logging的使用方法
2013/11/01 Python
用Python编写一个简单的Lisp解释器的教程
2015/04/03 Python
Python及Django框架生成二维码的方法分析
2018/01/31 Python
Python查找两个有序列表中位数的方法【基于归并算法】
2018/04/20 Python
Python中一般处理中文的几种方法
2019/03/06 Python
Python2.7版os.path.isdir中文路径返回false的解决方法
2019/06/21 Python
python中从for循环延申到推导式的具体使用
2019/11/29 Python
python实现udp传输图片功能
2020/03/20 Python
Python ADF 单位根检验 如何查看结果的实现
2020/06/03 Python
Python如何批量生成和调用变量
2020/11/21 Python
python自动从arxiv下载paper的示例代码
2020/12/05 Python
大学生个人求职信范文
2013/09/21 职场文书
英语专业个人求职信范文
2014/02/01 职场文书
《夸父追日》教学反思
2014/02/26 职场文书
学生会副主席竞聘书
2014/03/31 职场文书
大学英语演讲稿范文
2014/04/24 职场文书
运动会广播稿诗歌版
2014/09/12 职场文书
幼师辞职信范文
2015/02/27 职场文书
初二数学教学反思
2016/02/17 职场文书
python 通过使用Yolact训练数据集
2021/04/06 Python