keras模型可视化,层可视化及kernel可视化实例


Posted in Python onJanuary 24, 2020

keras模型可视化:

model:

model = Sequential()
# input: 100x100 images with 3 channels -> (100, 100, 3) tensors.
# this applies 32 convolution filters of size 3x3 each.
model.add(ZeroPadding2D((1,1), input_shape=(38, 38, 1)))
model.add(Conv2D(32, (3, 3), activation='relu', padding='same'))
# model.add(Conv2D(32, (3, 3), activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Conv2D(64, (3, 3), activation='relu', padding='same',))
# model.add(Conv2D(64, (3, 3), activation='relu', padding='same',))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Conv2D(128, (3, 3), activation='relu', padding='same',))
# model.add(Conv2D(128, (3, 3), activation='relu', padding='same',))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(AveragePooling2D((5,5)))

model.add(Flatten())
# model.add(Dense(512, activation='relu'))
# model.add(Dropout(0.5))
model.add(Dense(label_size, activation='softmax'))

1.层可视化:

test_x = []
img_src = cv2.imdecode(np.fromfile(r'c:\temp.tif', dtype=np.uint8), cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img_src, (38, 38), interpolation=cv2.INTER_CUBIC)
# img = np.random.randint(0,255,(38,38))
img = (255 - img) / 255
img = np.reshape(img, (38, 38, 1))
test_x.append(img)

###################################################################
layer = model.layers[1]
weight = layer.get_weights()
# print(weight)
print(np.asarray(weight).shape)
model_v1 = Sequential()
# input: 100x100 images with 3 channels -> (100, 100, 3) tensors.
# this applies 32 convolution filters of size 3x3 each.
model_v1.add(ZeroPadding2D((1, 1), input_shape=(38, 38, 1)))
model_v1.add(Conv2D(32, (3, 3), activation='relu', padding='same'))
# model.add(Conv2D(32, (3, 3), activation='relu', padding='same'))
model_v1.layers[1].set_weights(weight)

re = model_v1.predict(np.array(test_x))
print(np.shape(re))
re = np.transpose(re, (0,3,1,2))
for i in range(32):
  plt.subplot(4,8,i+1)
  plt.imshow(re[0][i]) #, cmap='gray'
plt.show()

##################################################################
model_v2 = Sequential()
# input: 100x100 images with 3 channels -> (100, 100, 3) tensors.
# this applies 32 convolution filters of size 3x3 each.
model_v2.add(ZeroPadding2D((1, 1), input_shape=(38, 38, 1)))
model_v2.add(Conv2D(32, (3, 3), activation='relu', padding='same'))
# model.add(Conv2D(32, (3, 3), activation='relu', padding='same'))
model_v2.add(BatchNormalization())
model_v2.add(MaxPooling2D(pool_size=(2, 2)))
model_v2.add(Dropout(0.25))

model_v2.add(Conv2D(64, (3, 3), activation='relu', padding='same', ))
print(len(model_v2.layers))
layer1 = model.layers[1]
weight1 = layer1.get_weights()
model_v2.layers[1].set_weights(weight1)
layer5 = model.layers[5]
weight5 = layer5.get_weights()
model_v2.layers[5].set_weights(weight5)
re2 = model_v2.predict(np.array(test_x))
re2 = np.transpose(re2, (0,3,1,2))
for i in range(64):
  plt.subplot(8,8,i+1)
  plt.imshow(re2[0][i]) #, cmap='gray'
plt.show()

##################################################################
model_v3 = Sequential()
# input: 100x100 images with 3 channels -> (100, 100, 3) tensors.
# this applies 32 convolution filters of size 3x3 each.
model_v3.add(ZeroPadding2D((1, 1), input_shape=(38, 38, 1)))
model_v3.add(Conv2D(32, (3, 3), activation='relu', padding='same'))
# model.add(Conv2D(32, (3, 3), activation='relu', padding='same'))
model_v3.add(BatchNormalization())
model_v3.add(MaxPooling2D(pool_size=(2, 2)))
model_v3.add(Dropout(0.25))

model_v3.add(Conv2D(64, (3, 3), activation='relu', padding='same', ))
# model.add(Conv2D(64, (3, 3), activation='relu', padding='same',))
model_v3.add(BatchNormalization())
model_v3.add(MaxPooling2D(pool_size=(2, 2)))
model_v3.add(Dropout(0.25))

model_v3.add(Conv2D(128, (3, 3), activation='relu', padding='same', ))

print(len(model_v3.layers))
layer1 = model.layers[1]
weight1 = layer1.get_weights()
model_v3.layers[1].set_weights(weight1)
layer5 = model.layers[5]
weight5 = layer5.get_weights()
model_v3.layers[5].set_weights(weight5)
layer9 = model.layers[9]
weight9 = layer9.get_weights()
model_v3.layers[9].set_weights(weight9)
re3 = model_v3.predict(np.array(test_x))
re3 = np.transpose(re3, (0,3,1,2))
for i in range(121):
  plt.subplot(11,11,i+1)
  plt.imshow(re3[0][i]) #, cmap='gray'
plt.show()

keras模型可视化,层可视化及kernel可视化实例

2.kernel可视化:

def process(x):
  res = np.clip(x, 0, 1)
  return res

def dprocessed(x):
  res = np.zeros_like(x)
  res += 1
  res[x < 0] = 0
  res[x > 1] = 0
  return res

def deprocess_image(x):
  x -= x.mean()
  x /= (x.std() + 1e-5)
  x *= 0.1
  x += 0.5
  x = np.clip(x, 0, 1)
  x *= 255
  x = np.clip(x, 0, 255).astype('uint8')
  return x

for i_kernal in range(64):
  input_img=model.input
  loss = K.mean(model.layers[5].output[:, :,:,i_kernal])
  # loss = K.mean(model.output[:, i_kernal])
  # compute the gradient of the input picture wrt this loss
  grads = K.gradients(loss, input_img)[0]
  # normalization trick: we normalize the gradient
  grads /= (K.sqrt(K.mean(K.square(grads))) + 1e-5)
  # this function returns the loss and grads given the input picture
  iterate = K.function([input_img, K.learning_phase()], [loss, grads])
  # we start from a gray image with some noise
  np.random.seed(0)
  num_channels=1
  img_height=img_width=38
  input_img_data = (255- np.random.randint(0,255,(1, img_height, img_width, num_channels))) / 255.
  failed = False
  # run gradient ascent
  print('####################################',i_kernal+1)
  loss_value_pre=0
  for i in range(10000):
    # processed = process(input_img_data)
    # predictions = model.predict(input_img_data)
    loss_value, grads_value = iterate([input_img_data,1])
    # grads_value *= dprocessed(input_img_data[0])
    if i%1000 == 0:
      # print(' predictions: ' , np.shape(predictions), np.argmax(predictions))
      print('Iteration %d/%d, loss: %f' % (i, 10000, loss_value))
      print('Mean grad: %f' % np.mean(grads_value))
      if all(np.abs(grads_val) < 0.000001 for grads_val in grads_value.flatten()):
        failed = True
        print('Failed')
        break
      # print('Image:\n%s' % str(input_img_data[0,0,:,:]))
      if loss_value_pre != 0 and loss_value_pre > loss_value:
        break
      if loss_value_pre == 0:
        loss_value_pre = loss_value

      # if loss_value > 0.99:
      #   break

    input_img_data += grads_value * 1 #e-3
  plt.subplot(8, 8, i_kernal+1)
  # plt.imshow((process(input_img_data[0,:,:,0])*255).astype('uint8'), cmap='Greys') #cmap='Greys'
  img_re = deprocess_image(input_img_data[0])
  img_re = np.reshape(img_re, (38,38))
  plt.imshow(img_re, cmap='Greys') #cmap='Greys'
  # plt.show()
plt.show()

keras模型可视化,层可视化及kernel可视化实例

model.layers[1]

keras模型可视化,层可视化及kernel可视化实例

model.layers[5]

keras模型可视化,层可视化及kernel可视化实例

model.layers[-1]

以上这篇keras模型可视化,层可视化及kernel可视化实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
利用Python实现简单的相似图片搜索的教程
Apr 23 Python
Python实现识别手写数字大纲
Jan 29 Python
python之pyqt5通过按钮改变Label的背景颜色方法
Jun 13 Python
解决python3 安装不了PIL的问题
Aug 16 Python
python实现局域网内实时通信代码
Dec 22 Python
Python实现图片识别加翻译功能
Dec 26 Python
python3中关于excel追加写入格式被覆盖问题(实例代码)
Jan 10 Python
对tensorflow中cifar-10文档的Read操作详解
Feb 10 Python
浅谈python输出列表元素的所有排列形式
Feb 26 Python
使用Jupyter notebooks上传文件夹或大量数据到服务器
Apr 14 Python
pytorch 如何使用float64训练
May 24 Python
Python中常见的反爬机制及其破解方法总结
Jun 10 Python
keras 特征图可视化实例(中间层)
Jan 24 #Python
基于keras输出中间层结果的2种实现方式
Jan 24 #Python
tensorflow 保存模型和取出中间权重例子
Jan 24 #Python
tensorflow 模型权重导出实例
Jan 24 #Python
在Tensorflow中查看权重的实现
Jan 24 #Python
tensorflow求导和梯度计算实例
Jan 23 #Python
Tensorflow的梯度异步更新示例
Jan 23 #Python
You might like
解决Laravel自定义类引入和命名空间的问题
2019/10/15 PHP
js查找父节点的简单方法
2008/06/28 Javascript
Mootools 图片展示插件(lightbox,ImageMenu)收集集合
2010/05/21 Javascript
基于jQuery的弹出警告对话框美化插件(警告,确认和提示)
2010/06/10 Javascript
Array, Array Constructor, for in loop, typeof, instanceOf
2011/09/13 Javascript
一个挺有意思的Javascript小问题说明
2011/09/26 Javascript
JavaScript中prototype为对象添加属性的误区介绍
2013/10/15 Javascript
JS获取各种浏览器窗口大小的方法
2014/01/14 Javascript
使用GruntJS构建Web程序之安装篇
2014/06/04 Javascript
JavaScript中的Repaint和Reflow用法详解
2015/07/27 Javascript
js实现的早期滑动门菜单效果代码
2015/08/27 Javascript
jQuery 3 中的新增功能汇总介绍
2016/06/12 Javascript
JS中script标签defer和async属性的区别详解
2016/08/12 Javascript
jQuery UI Grid 模态框中的表格实例代码
2017/04/01 jQuery
jQuery实现select下拉框获取当前选中文本、值、索引
2017/05/08 jQuery
js事件触发操作实例分析
2019/06/21 Javascript
Ant Design的Table组件去除
2020/10/24 Javascript
vue-quill-editor插入图片路径太长问题解决方法
2021/01/08 Vue.js
[02:11]2016国际邀请赛中国区预选赛最美TA采访现场玩家
2016/06/28 DOTA
python学习数据结构实例代码
2015/05/11 Python
详解Django缓存处理中Vary头部的使用
2015/07/24 Python
python实现用户登录系统
2016/05/21 Python
python中模块查找的原理与方法详解
2017/08/11 Python
解决python3 json数据包含中文的读写问题
2018/05/10 Python
django静态文件加载的方法
2018/05/20 Python
Python字符串、整数、和浮点型数相互转换实例
2018/08/04 Python
python 解决print数组/矩阵无法完整输出的问题
2020/02/19 Python
基于Python快速处理PDF表格数据
2020/06/03 Python
使用CSS媒体查询(Media Queries)和JavaScript判断浏览器设备类型的方法
2014/04/03 HTML / CSS
数控技术应用个人求职信范文
2014/02/03 职场文书
最经典的商业地产项目广告词
2014/03/13 职场文书
酒店开业庆典主持词
2014/03/21 职场文书
校园运动会广播稿
2014/10/06 职场文书
党的群众路线教育实践活动批评与自我批评发言稿
2014/10/16 职场文书
Java字符缓冲流BufferedWriter
2022/04/09 Java/Android
Android开发EditText禁止输入监听及InputFilter字符过滤
2022/06/10 Java/Android