python实现隐马尔科夫模型HMM


Posted in Python onMarch 25, 2018

一份完全按照李航<<统计学习方法>>介绍的HMM代码,供大家参考,具体内容如下

#coding=utf8 
''''' 
Created on 2017-8-5 
里面的代码许多地方可以精简,但为了百分百还原公式,就没有精简了。 
@author: adzhua 
''' 
 
import numpy as np 
 
class HMM(object): 
  def __init__(self, A, B, pi): 
    ''''' 
    A: 状态转移概率矩阵 
    B: 输出观察概率矩阵 
    pi: 初始化状态向量 
    ''' 
    self.A = np.array(A) 
    self.B = np.array(B) 
    self.pi = np.array(pi) 
    self.N = self.A.shape[0]  # 总共状态个数 
    self.M = self.B.shape[1]  # 总共观察值个数   
    
   
  # 输出HMM的参数信息 
  def printHMM(self): 
    print ("==================================================") 
    print ("HMM content: N =",self.N,",M =",self.M) 
    for i in range(self.N): 
      if i==0: 
        print ("hmm.A ",self.A[i,:]," hmm.B ",self.B[i,:]) 
      else: 
        print ("   ",self.A[i,:],"    ",self.B[i,:]) 
    print ("hmm.pi",self.pi) 
    print ("==================================================") 
           
   
  # 前向算法  
  def forwar(self, T, O, alpha, prob): 
    ''''' 
    T: 观察序列的长度 
    O: 观察序列 
    alpha: 运算中用到的临时数组 
    prob: 返回值所要求的概率 
    '''   
     
    # 初始化 
    for i in range(self.N): 
      alpha[0, i] = self.pi[i] * self.B[i, O[0]] 
 
    # 递归 
    for t in range(T-1): 
      for j in range(self.N): 
        sum = 0.0 
        for i in range(self.N): 
          sum += alpha[t, i] * self.A[i, j] 
        alpha[t+1, j] = sum * self.B[j, O[t+1]]     
     
    # 终止 
    sum = 0.0 
    for i in range(self.N): 
      sum += alpha[T-1, i] 
     
    prob[0] *= sum   
 
   
  # 带修正的前向算法 
  def forwardWithScale(self, T, O, alpha, scale, prob): 
    scale[0] = 0.0 
     
    # 初始化 
    for i in range(self.N): 
      alpha[0, i] = self.pi[i] * self.B[i, O[0]] 
      scale[0] += alpha[0, i] 
       
    for i in range(self.N): 
      alpha[0, i] /= scale[0] 
     
    # 递归 
    for t in range(T-1): 
      scale[t+1] = 0.0 
      for j in range(self.N): 
        sum = 0.0 
        for i in range(self.N): 
          sum += alpha[t, i] * self.A[i, j] 
         
        alpha[t+1, j] = sum * self.B[j, O[t+1]] 
        scale[t+1] += alpha[t+1, j] 
       
      for j in range(self.N): 
        alpha[t+1, j] /= scale[t+1] 
      
    # 终止 
    for t in range(T): 
      prob[0] += np.log(scale[t])     
       
       
  def back(self, T, O, beta, prob):  
    ''''' 
    T: 观察序列的长度  len(O) 
    O: 观察序列 
    beta: 计算时用到的临时数组 
    prob: 返回值;所要求的概率 
    '''  
     
    # 初始化         
    for i in range(self.N): 
      beta[T-1, i] = 1.0 
     
    # 递归 
    for t in range(T-2, -1, -1): # 从T-2开始递减;即T-2, T-3, T-4, ..., 0 
      for i in range(self.N): 
        sum = 0.0 
        for j in range(self.N): 
          sum += self.A[i, j] * self.B[j, O[t+1]] * beta[t+1, j] 
         
        beta[t, i] = sum 
     
    # 终止 
    sum = 0.0 
    for i in range(self.N): 
      sum += self.pi[i]*self.B[i,O[0]]*beta[0,i] 
     
    prob[0] = sum   
     
     
  # 带修正的后向算法 
  def backwardWithScale(self, T, O, beta, scale): 
    ''''' 
    T: 观察序列的长度 len(O) 
    O: 观察序列 
    beta: 计算时用到的临时数组 
    ''' 
    # 初始化 
    for i in range(self.N): 
      beta[T-1, i] = 1.0 
     
    # 递归         
    for t in range(T-2, -1, -1): 
      for i in range(self.N): 
        sum = 0.0 
        for j in range(self.N): 
          sum += self.A[i, j] * self.B[j, O[t+1]] * beta[t+1, j] 
         
        beta[t, i] = sum / scale[t+1]     
         
   
  # viterbi算法       
  def viterbi(self, O): 
    ''''' 
    O: 观察序列 
    ''' 
    T = len(O) 
    # 初始化 
    delta = np.zeros((T, self.N), np.float) 
    phi = np.zeros((T, self.N), np.float) 
    I = np.zeros(T) 
     
    for i in range(self.N): 
      delta[0, i] = self.pi[i] * self.B[i, O[0]] 
      phi[0, i] = 0.0 
     
    # 递归 
    for t in range(1, T): 
      for i in range(self.N): 
        delta[t, i] = self.B[i, O[t]] * np.array([delta[t-1, j] * self.A[j, i] for j in range(self.N)] ).max() 
        phi = np.array([delta[t-1, j] * self.A[j, i] for j in range(self.N)]).argmax() 
       
    # 终止 
    prob = delta[T-1, :].max() 
    I[T-1] = delta[T-1, :].argmax() 
     
    for t in range(T-2, -1, -1): 
      I[t] = phi[I[t+1]] 
       
     
    return prob, I 
   
   
  # 计算gamma(计算A所需的分母;详情见李航的统计学习) : 时刻t时马尔可夫链处于状态Si的概率 
  def computeGamma(self, T, alpha, beta, gamma): 
    '''''''' 
    for t in range(T): 
      for i in range(self.N): 
        sum = 0.0 
        for j in range(self.N): 
          sum += alpha[t, j] * beta[t, j] 
         
        gamma[t, i] = (alpha[t, i] * beta[t, i]) / sum   
   
  # 计算sai(i,j)(计算A所需的分子) 为给定训练序列O和模型lambda时 
  def computeXi(self, T, O, alpha, beta, Xi): 
     
    for t in range(T-1): 
      sum = 0.0 
      for i in range(self.N): 
        for j in range(self.N): 
          Xi[t, i, j] = alpha[t, i] * self.A[i, j] * self.B[j, O[t+1]] * beta[t+1, j] 
          sum += Xi[t, i, j] 
       
      for i in range(self.N): 
        for j in range(self.N): 
          Xi[t, i, j] /= sum 
   
   
  # 输入 L个观察序列O,初始模型:HMM={A,B,pi,N,M} 
  def BaumWelch(self, L, T, O, alpha, beta, gamma):                   
    DELTA = 0.01 ; round = 0 ; flag = 1 ; probf = [0.0] 
    delta = 0.0; probprev = 0.0 ; ratio = 0.0 ; deltaprev = 10e-70 
     
    xi = np.zeros((T, self.N, self.N)) # 计算A的分子 
    pi = np.zeros((T), np.float)  # 状态初始化概率 
     
    denominatorA = np.zeros((self.N), np.float) # 辅助计算A的分母的变量 
    denominatorB = np.zeros((self.N), np.float) 
    numeratorA = np.zeros((self.N, self.N), np.float)  # 辅助计算A的分子的变量 
    numeratorB = np.zeros((self.N, self.M), np.float)  # 针对输出观察概率矩阵 
    scale = np.zeros((T), np.float) 
     
    while True: 
      probf[0] =0 
       
      # E_step 
      for l in range(L): 
        self.forwardWithScale(T, O[l], alpha, scale, probf) 
        self.backwardWithScale(T, O[l], beta, scale) 
        self.computeGamma(T, alpha, beta, gamma)  # (t, i) 
        self.computeXi(T, O[l], alpha, beta, xi)  #(t, i, j) 
         
        for i in range(self.N): 
          pi[i] += gamma[0, i] 
          for t in range(T-1): 
            denominatorA[i] += gamma[t, i] 
            denominatorB[i] += gamma[t, i] 
          denominatorB[i] += gamma[T-1, i] 
         
          for j in range(self.N): 
            for t in range(T-1): 
              numeratorA[i, j] += xi[t, i, j] 
             
          for k in range(self.M): # M为观察状态取值个数 
            for t in range(T): 
              if O[l][t] == k: 
                numeratorB[i, k] += gamma[t, i]   
                 
       
      # M_step。 计算pi, A, B 
      for i in range(self.N): # 这个for循环也可以放到for l in range(L)里面 
        self.pi[i] = 0.001 / self.N + 0.999 * pi[i] / L 
         
        for j in range(self.N): 
          self.A[i, j] = 0.001 / self.N + 0.999 * numeratorA[i, j] / denominatorA[i]           
          numeratorA[i, j] = 0.0 
         
        for k in range(self.M): 
          self.B[i, k] = 0.001 / self.N + 0.999 * numeratorB[i, k] / denominatorB[i] 
          numeratorB[i, k] = 0.0   
         
        #重置 
        pi[i] = denominatorA[i] = denominatorB[i] = 0.0 
         
      if flag == 1: 
        flag = 0 
        probprev = probf[0] 
        ratio = 1 
        continue 
       
      delta = probf[0] - probprev  
      ratio = delta / deltaprev   
      probprev = probf[0] 
      deltaprev = delta 
      round += 1 
       
      if ratio <= DELTA : 
        print('num iteration: ', round)   
        break 
     
 
if __name__ == '__main__': 
  print ("python my HMM") 
   
  # 初始的状态概率矩阵pi;状态转移矩阵A;输出观察概率矩阵B; 观察序列 
  pi = [0.5,0.5] 
  A = [[0.8125,0.1875],[0.2,0.8]] 
  B = [[0.875,0.125],[0.25,0.75]] 
  O = [ 
     [1,0,0,1,1,0,0,0,0], 
     [1,1,0,1,0,0,1,1,0], 
     [0,0,1,1,0,0,1,1,1] 
    ] 
  L = len(O) 
  T = len(O[0])  # T等于最长序列的长度就好了 
   
  hmm = HMM(A, B, pi) 
  alpha = np.zeros((T,hmm.N),np.float) 
  beta = np.zeros((T,hmm.N),np.float) 
  gamma = np.zeros((T,hmm.N),np.float) 
   
  # 训练 
  hmm.BaumWelch(L,T,O,alpha,beta,gamma) 
   
  # 输出HMM参数信息 
  hmm.printHMM()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python Tkinter简单布局实例教程
Sep 03 Python
Python中的元类编程入门指引
Apr 15 Python
Python修改MP3文件的方法
Jun 15 Python
使用Python编写简单的画图板程序的示例教程
Dec 08 Python
python引入导入自定义模块和外部文件的实例
Jul 24 Python
Python通过matplotlib绘制动画简单实例
Dec 13 Python
在OpenCV里使用Camshift算法的实现
Nov 22 Python
如何通过python实现人脸识别验证
Jan 17 Python
python中列表的含义及用法
May 26 Python
Pytorch 使用opnecv读入图像由HWC转为BCHW格式方式
Jun 02 Python
python实现取余操作的简单实例
Aug 16 Python
Pycharm安装Qt Design快捷工具的详细教程
Nov 18 Python
Python实现的寻找前5个默尼森数算法示例
Mar 25 #Python
Python实现修改文件内容的方法分析
Mar 25 #Python
利用python为运维人员写一个监控脚本
Mar 25 #Python
python实现数据写入excel表格
Mar 25 #Python
使用requests库制作Python爬虫
Mar 25 #Python
利用Python代码实现数据可视化的5种方法详解
Mar 25 #Python
Python cookbook(数据结构与算法)同时对数据做转换和换算处理操作示例
Mar 23 #Python
You might like
PHP小技巧搜集,每个PHPer都来露一手
2007/01/02 PHP
通过PHP修改Linux或Unix口令的方法分享
2012/01/30 PHP
php统计时间和内存使用情况示例分享
2014/03/13 PHP
ThinkPHP模版引擎之变量输出详解
2014/12/05 PHP
php字符串替换函数substr_replace()用法实例
2015/03/17 PHP
java微信开发之上传下载多媒体文件
2016/06/24 PHP
PHP面向对象中new self()与 new static()的区别浅析
2017/08/17 PHP
JS解密入门之凭直觉解
2008/06/25 Javascript
经过绑定元素时会多次触发mouseover和mouseout事件
2014/02/28 Javascript
jquery实现在页面加载的时自动为日期插件添加当前日期
2014/08/20 Javascript
js控制一个按钮是否可点击(可使用)disabled的实例
2017/02/14 Javascript
浅谈JavaScript中的属性:如何遍历属性
2017/09/14 Javascript
基于three.js实现的3D粒子动效实例代码
2019/04/09 Javascript
基于vue-cli、elementUI的Vue超简单入门小例子(推荐)
2019/04/17 Javascript
微信小程序wepy框架学习和使用心得详解
2019/05/24 Javascript
JS面向对象编程基础篇(三) 继承操作实例详解
2020/03/03 Javascript
Vue3+elementui plus创建项目的方法
2020/12/01 Vue.js
jQuery实现本地存储
2020/12/22 jQuery
[56:35]DOTA2上海特级锦标赛C组小组赛#1 OG VS Archon第二局
2016/02/27 DOTA
TF-IDF与余弦相似性的应用(二) 找出相似文章
2017/12/21 Python
在python中将list分段并保存为array类型的方法
2019/07/15 Python
Python3+Requests+Excel完整接口自动化测试框架的实现
2019/10/11 Python
Anaconda的安装与虚拟环境建立
2020/11/18 Python
HTML5如何为形状图上颜色怎么绘制具有颜色和透明度的矩形
2014/06/23 HTML / CSS
关于html字符串正则判断和匹配的具体使用
2019/12/12 HTML / CSS
学前教育毕业生自荐信
2013/10/29 职场文书
商务会议邀请函
2014/01/09 职场文书
关于毕业的广播稿
2014/01/10 职场文书
个人简历自荐信
2014/06/26 职场文书
2014年法务工作总结
2014/12/11 职场文书
2016自主招生教师推荐信范文
2015/03/23 职场文书
职场新人刚入职工作总结该怎么写?
2019/05/15 职场文书
php 原生分页
2021/04/01 PHP
使用Redis实现秒杀功能的简单方法
2021/05/08 Redis
CSS中float高度塌陷问题的四种解决方案
2022/04/18 HTML / CSS
Android开发手册TextInputLayout样式使用示例
2022/06/10 Java/Android