python机器学习实战之树回归详解


Posted in Python onDecember 20, 2017

本文实例为大家分享了树回归的具体代码,供大家参考,具体内容如下

#-*- coding:utf-8 -*- 
#!/usr/bin/python 
''''' 
回归树  连续值回归预测 的 回归树 
''' 
# 测试代码 
# import regTrees as RT RT.RtTreeTest() RT.RtTreeTest('ex0.txt') RT.RtTreeTest('ex2.txt') 
# import regTrees as RT RT.RtTreeTest('ex2.txt',ops=(10000,4)) 
# import regTrees as RT RT.pruneTest() 
# 模型树 测试 
# import regTrees as RT RT.modeTreeTest(ops=(1,10) 
# 模型回归树和普通回归树 效果比较 计算相关系数  
# import regTrees as RT RT.MRTvsSRT() 
from numpy import * 
 
 
# Tab 键值分隔的数据 提取成 列表数据集 成浮点型数据 
def loadDataSet(fileName):   #   
  dataMat = []        # 目标数据集 列表 
  fr = open(fileName) 
  for line in fr.readlines(): 
    curLine = line.strip().split('\t') 
    fltLine = map(float,curLine) #转换成浮点型数据 
    dataMat.append(fltLine) 
  return dataMat 
 
# 按特征值 的数据集二元切分  特征(列)  对应的值 
# 某一列的值大于value值的一行样本全部放在一个矩阵里,其余放在另一个矩阵里 
def binSplitDataSet(dataSet, feature, value): 
  mat0 = dataSet[nonzero(dataSet[:,feature] > value)[0],:][0] # 数组过滤 
  mat1 = dataSet[nonzero(dataSet[:,feature] <= value)[0],:][0] #  
  return mat0,mat1 
 
# 常量叶子节点 
def regLeaf(dataSet):# 最后一列为标签 为数的叶子节点 
  return mean(dataSet[:,-1])# 目标变量的均值 
# 方差 
def regErr(dataSet): 
  return var(dataSet[:,-1]) * shape(dataSet)[0]# 目标变量的平方误差 * 样本个数(行数)的得到总方差 
 
# 选择最优的 分裂属性和对应的大小 
def chooseBestSplit(dataSet, leafType=regLeaf, errType=regErr, ops=(1,4)): 
  tolS = ops[0] # 允许的误差下降值 
  tolN = ops[1] # 切分的最少样本数量 
  if len(set(dataSet[:,-1].T.tolist()[0])) == 1: # 特征剩余数量为1 则返回 
    return None, leafType(dataSet)       #### 返回 1 ####  
  m,n = shape(dataSet) # 当前数据集大小 形状 
  S = errType(dataSet) # 当前数据集误差 均方误差 
  bestS = inf; bestIndex = 0; bestValue = 0 
  for featIndex in range(n-1):# 遍历 可分裂特征 
    for splitVal in set(dataSet[:,featIndex]):# 遍历对应 特性的 属性值 
      mat0, mat1 = binSplitDataSet(dataSet, featIndex, splitVal)# 进行二元分割 
      if (shape(mat0)[0] < tolN) or (shape(mat1)[0] < tolN): continue #样本数量 小于设定值,则不切分 
      newS = errType(mat0) + errType(mat1)# 二元分割后的 均方差 
      if newS < bestS: # 弱比分裂前小 则保留这个分类 
        bestIndex = featIndex 
        bestValue = splitVal 
        bestS = newS 
  if (S - bestS) < tolS: # 弱分裂后 比 分裂前样本方差 减小的不多 也不进行切分 
    return None, leafType(dataSet)       #### 返回 2 ####  
  mat0, mat1 = binSplitDataSet(dataSet, bestIndex, bestValue) 
  if (shape(mat0)[0] < tolN) or (shape(mat1)[0] < tolN): #样本数量 小于设定值,则不切分 
    return None, leafType(dataSet)       #### 返回 3 ####  
  return bestIndex,bestValue # 返回最佳的 分裂属性 和 对应的值 
 
# 创建回归树 numpy数组数据集 叶子函数  误差函数  用户设置参数(最小样本数量 以及最小误差下降间隔) 
def createTree(dataSet, leafType=regLeaf, errType=regErr, ops=(1,4)): 
 # 找到最佳的待切分特征和对应 的值 
  feat, val = chooseBestSplit(dataSet, leafType, errType, ops)# 
 # 停止条件 该节点不能再分,该节点为叶子节点 
  if feat == None: return val  
  retTree = {} 
  retTree['spInd'] = feat #特征 
  retTree['spVal'] = val #值 
 # 执行二元切分  
  lSet, rSet = binSplitDataSet(dataSet, feat, val)# 二元切分 左树 右树 
 # 创建左树 
  retTree['left'] = createTree(lSet, leafType, errType, ops)  # 左树 最终返回子叶子节点 的属性值 
 # 创建右树 
  retTree['right'] = createTree(rSet, leafType, errType, ops) # 右树 
  return retTree  
 
# 未进行后剪枝的回归树测试  
def RtTreeTest(filename='ex00.txt',ops=(1,4)): 
  MyDat = loadDataSet(filename) # ex00.txt y = w*x 两维  ex0.txt y = w*x+b 三维 
  MyMat = mat(MyDat) 
  print createTree(MyMat,ops=ops) 
# 判断是不是树 (按字典形式存储) 
def isTree(obj): 
  return (type(obj).__name__=='dict') 
 
# 返回树的平均值 塌陷处理 
def getMean(tree): 
  if isTree(tree['right']):  
  tree['right'] = getMean(tree['right']) 
  if isTree(tree['left']):  
  tree['left'] = getMean(tree['left']) 
  return (tree['left']+tree['right'])/2.0 # 两个叶子节点的 平均值 
 
# 后剪枝  待剪枝的树  剪枝所需的测试数据 
def prune(tree, testData): 
  if shape(testData)[0] == 0:  
  return getMean(tree) #没有测试数据 返回 
  if (isTree(tree['right']) or isTree(tree['left'])): # 如果回归树的左右两边是树 
    lSet, rSet = binSplitDataSet(testData, tree['spInd'], tree['spVal'])#对测试数据 进行切分 
  if isTree(tree['left']):  
  tree['left'] = prune(tree['left'], lSet)  # 对左树进行剪枝 
  if isTree(tree['right']):  
  tree['right'] = prune(tree['right'], rSet)# 对右树进行剪枝 
  if not isTree(tree['left']) and not isTree(tree['right']):#两边都是叶子 
    lSet, rSet = binSplitDataSet(testData, tree['spInd'], tree['spVal'])#对测试数据 进行切分 
    errorNoMerge = sum(power(lSet[:,-1] - tree['left'],2)) +\ 
      sum(power(rSet[:,-1] - tree['right'],2)) # 对两边叶子合并前计算 误差  
    treeMean = (tree['left']+tree['right'])/2.0 # 合并后的 叶子 均值 
    errorMerge = sum(power(testData[:,-1] - treeMean,2))# 合并后 的误差 
    if errorMerge < errorNoMerge: # 合并后的误差小于合并前的误差 
      print "merging"      # 说明合并后的树 误差更小 
      return treeMean      # 返回两个叶子 的均值 作为 合并后的叶子节点 
    else: return tree 
  else: return tree 
   
def pruneTest(): 
  MyDat = loadDataSet('ex2.txt')  
  MyMat = mat(MyDat) 
  MyTree = createTree(MyMat,ops=(0,1))  # 为了得到 最大的树 误差设置为0 个数设置为1 即不进行预剪枝 
  MyDatTest = loadDataSet('ex2test.txt') 
  MyMatTest = mat(MyDatTest) 
  print prune(MyTree,MyMatTest) 
 
 
######叶子节点为线性模型的模型树######### 
# 线性模型 
def linearSolve(dataSet):   
  m,n = shape(dataSet) # 数据集大小 
  X = mat(ones((m,n))) # 自变量 
  Y = mat(ones((m,1))) # 目标变量  
  X[:,1:n] = dataSet[:,0:n-1]# 样本数据集合 
  Y = dataSet[:,-1]     # 标签 
  # 线性模型 求解 
  xTx = X.T*X         
  if linalg.det(xTx) == 0.0: 
    raise NameError('行列式值为零,不能计算逆矩阵,可适当增加ops的第二个值') 
  ws = xTx.I * (X.T * Y) 
  return ws,X,Y 
 
# 模型叶子节点 
def modelLeaf(dataSet):  
  ws,X,Y = linearSolve(dataSet) 
  return ws 
 
# 计算模型误差 
def modelErr(dataSet): 
  ws,X,Y = linearSolve(dataSet) 
  yHat = X * ws 
  return sum(power(Y - yHat,2)) 
 
# 模型树测试 
def modeTreeTest(filename='ex2.txt',ops=(1,4)): 
  MyDat = loadDataSet(filename) #  
  MyMat = mat(MyDat) 
  print createTree(MyMat,leafType=modelLeaf, errType=modelErr,ops=ops)#带入线性模型 和相应 的误差计算函数 
 
 
# 模型效果计较 
# 线性叶子节点 预测计算函数 直接返回 树叶子节点 值 
def regTreeEval(model, inDat): 
  return float(model) 
 
def modelTreeEval(model, inDat): 
  n = shape(inDat)[1] 
  X = mat(ones((1,n+1)))# 增加一列 
  X[:,1:n+1]=inDat 
  return float(X*model) # 返回 值乘以 线性回归系数 
 
# 树预测函数 
def treeForeCast(tree, inData, modelEval=regTreeEval): 
  if not isTree(tree):  
  return modelEval(tree, inData) # 返回 叶子节点 预测值 
  if inData[tree['spInd']] > tree['spVal']:   # 左树 
    if isTree(tree['left']):  
    return treeForeCast(tree['left'], inData, modelEval)# 还是树 则递归调用 
    else:  
    return modelEval(tree['left'], inData) # 计算叶子节点的值 并返回 
  else: 
    if isTree(tree['right']):         # 右树 
    return treeForeCast(tree['right'], inData, modelEval) 
    else:  
    return modelEval(tree['right'], inData)# 计算叶子节点的值 并返回 
 
# 得到预测值     
def createForeCast(tree, testData, modelEval=regTreeEval): 
  m=len(testData) 
  yHat = mat(zeros((m,1)))#预测标签 
  for i in range(m): 
    yHat[i,0] = treeForeCast(tree, mat(testData[i]), modelEval) 
  return yHat 
 
# 常量回归树和线性模型回归树的预测结果比较 
def MRTvsSRT(): 
  TestMat = mat(loadDataSet('bikeSpeedVsIq_test.txt')) 
  TrainMat = mat(loadDataSet('bikeSpeedVsIq_train.txt')) 
# 普通回归树 预测结果 
  # 得到普通回归树树 
  StaTree = createTree(TrainMat, ops=(1,20)) 
  # 得到预测结果 
  StaYHat = createForeCast(StaTree, TestMat[:,0], regTreeEval)# 第一列为 自变量 
  # 预测结果和真实标签的相关系数 
  StaCorr = corrcoef(StaYHat, TestMat[:,1], rowvar=0)[0,1] # NumPy 库函数  
# 模型回归树 预测结果 
  # 得到模型回归树 
  ModeTree = createTree(TrainMat,leafType=modelLeaf, errType=modelErr, ops=(1,20)) 
  # 得到预测结果 
  ModeYHat = createForeCast(ModeTree, TestMat[:,0], modelTreeEval)  
  # 预测结果和真实标签的相关系数 
  ModeCorr = corrcoef(ModeYHat, TestMat[:,1], rowvar=0)[0,1] # NumPy 库函数   
  print "普通回归树 预测结果的相关系数R2: %f" %(StaCorr)                        
  print "模型回归树 预测结果的相关系数R2: %f" %(ModeCorr) 
  if ModeCorr>StaCorr: 
  print "模型回归树效果优于普通回归树" 
  else: 
  print "回归回归树效果优于模型普通树"

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python ORM框架SQLAlchemy学习笔记之数据查询实例
Jun 10 Python
在Python中使用matplotlib模块绘制数据图的示例
May 04 Python
Python基于smtplib实现异步发送邮件服务
May 28 Python
python下读取公私钥做加解密实例详解
Mar 29 Python
python正则实现计算器功能
Dec 14 Python
Python语言的变量认识及操作方法
Feb 11 Python
python微信跳一跳系列之棋子定位像素遍历
Feb 26 Python
Python实现的txt文件去重功能示例
Jul 07 Python
python3基于TCP实现CS架构文件传输
Jul 28 Python
Python+opencv 实现图片文字的分割的方法示例
Jul 04 Python
Python 3.6打包成EXE可执行程序的实现
Oct 18 Python
python re模块常见用法例举
Mar 01 Python
使用python 和 lint 删除项目无用资源的方法
Dec 20 #Python
python机器学习实战之K均值聚类
Dec 20 #Python
Python绘制3d螺旋曲线图实例代码
Dec 20 #Python
python机器学习实战之最近邻kNN分类器
Dec 20 #Python
python3.6 +tkinter GUI编程 实现界面化的文本处理工具(推荐)
Dec 20 #Python
浅谈Python实现Apriori算法介绍
Dec 20 #Python
利用Python如何生成hash值示例详解
Dec 20 #Python
You might like
日本十大惊悚动漫
2020/03/04 日漫
PHP 超链接 抓取实现代码
2009/06/29 PHP
PHP实现的XXTEA加密解密算法示例
2018/08/28 PHP
图片上传即时显示缩略图的js代码
2009/05/27 Javascript
javascript 获取表单file全路径
2009/12/31 Javascript
javascript中万恶的function实例分析
2011/05/25 Javascript
基于JavaScript实现继承机制之构造函数+原型链混合方式的使用详解
2013/05/07 Javascript
javascript中通过arguments参数伪装方法重载
2014/10/08 Javascript
js光标定位文本框回车表单提交问题的解决方法
2015/05/11 Javascript
利用jquery制作滚动到指定位置触发动画
2016/03/26 Javascript
浅析Javascript的自动分号插入(ASI)机制
2016/09/29 Javascript
BootStrap selectpicker后台动态绑定数据
2017/06/01 Javascript
浅谈webpack下的AOP式无侵入注入
2017/11/12 Javascript
详解 vue better-scroll滚动插件排坑
2018/02/08 Javascript
讲解vue-router之什么是动态路由
2018/05/28 Javascript
[40:19]2018完美盛典CS.GO表演赛
2018/12/17 DOTA
Django 路由系统URLconf的使用
2018/10/11 Python
Python3的介绍、安装和命令行的认识(推荐)
2018/10/20 Python
python实现QQ空间自动点赞功能
2019/04/09 Python
Python修改列表值问题解决方案
2020/03/06 Python
pycharm实现在子类中添加一个父类没有的属性
2020/03/12 Python
Pyinstaller加密打包应用的示例代码
2020/06/11 Python
python爬取豆瓣电影排行榜(requests)的示例代码
2021/02/18 Python
HTML5 Canvas+JS控制电脑或手机上的摄像头实例
2014/05/03 HTML / CSS
荷兰照明、灯具和配件网上商店:dmlights
2019/08/25 全球购物
全球最大的瓷器、水晶和银器零售商:Replacements
2020/06/15 全球购物
万户网络JAVA程序员岗位招聘笔试试卷
2013/01/08 面试题
网络工程与软件技术毕业生自荐信
2013/09/24 职场文书
物流专业大学生的自我鉴定
2013/11/13 职场文书
行政部总经理岗位职责
2014/01/04 职场文书
学术会议邀请函范文
2014/01/22 职场文书
食品销售计划书
2014/04/26 职场文书
运动会演讲稿200字
2014/08/25 职场文书
党员教师群众路线对照检查材料思想汇报
2014/09/29 职场文书
Python爬虫之爬取某文库文档数据
2021/04/21 Python
Linux服务器离线安装 nginx的详细步骤
2022/06/16 Servers