Python多线程、异步+多进程爬虫实现代码


Posted in Python onFebruary 17, 2016

安装Tornado
省事点可以直接用grequests库,下面用的是tornado的异步client。 异步用到了tornado,根据官方文档的例子修改得到一个简单的异步爬虫类。可以参考下最新的文档学习下。
pip install tornado

异步爬虫

#!/usr/bin/env python
# -*- coding:utf-8 -*-

import time
from datetime import timedelta
from tornado import httpclient, gen, ioloop, queues
import traceback


class AsySpider(object):
  """A simple class of asynchronous spider."""
  def __init__(self, urls, concurrency=10, **kwargs):
    urls.reverse()
    self.urls = urls
    self.concurrency = concurrency
    self._q = queues.Queue()
    self._fetching = set()
    self._fetched = set()

  def fetch(self, url, **kwargs):
    fetch = getattr(httpclient.AsyncHTTPClient(), 'fetch')
    return fetch(url, **kwargs)

  def handle_html(self, url, html):
    """handle html page"""
    print(url)

  def handle_response(self, url, response):
    """inherit and rewrite this method"""
    if response.code == 200:
      self.handle_html(url, response.body)

    elif response.code == 599:  # retry
      self._fetching.remove(url)
      self._q.put(url)

  @gen.coroutine
  def get_page(self, url):
    try:
      response = yield self.fetch(url)
      print('######fetched %s' % url)
    except Exception as e:
      print('Exception: %s %s' % (e, url))
      raise gen.Return(e)
    raise gen.Return(response)

  @gen.coroutine
  def _run(self):
    @gen.coroutine
    def fetch_url():
      current_url = yield self._q.get()
      try:
        if current_url in self._fetching:
          return

        print('fetching****** %s' % current_url)
        self._fetching.add(current_url)

        response = yield self.get_page(current_url)
        self.handle_response(current_url, response)  # handle reponse

        self._fetched.add(current_url)

        for i in range(self.concurrency):
          if self.urls:
            yield self._q.put(self.urls.pop())

      finally:
        self._q.task_done()

    @gen.coroutine
    def worker():
      while True:
        yield fetch_url()

    self._q.put(self.urls.pop())  # add first url

    # Start workers, then wait for the work queue to be empty.
    for _ in range(self.concurrency):
      worker()

    yield self._q.join(timeout=timedelta(seconds=300000))
    assert self._fetching == self._fetched

  def run(self):
    io_loop = ioloop.IOLoop.current()
    io_loop.run_sync(self._run)


class MySpider(AsySpider):

  def fetch(self, url, **kwargs):
    """重写父类fetch方法可以添加cookies,headers,timeout等信息"""
    cookies_str = "PHPSESSID=j1tt66a829idnms56ppb70jri4; pspt=%7B%22id%22%3A%2233153%22%2C%22pswd%22%3A%228835d2c1351d221b4ab016fbf9e8253f%22%2C%22_code%22%3A%22f779dcd011f4e2581c716d1e1b945861%22%7D; key=%E9%87%8D%E5%BA%86%E5%95%84%E6%9C%A8%E9%B8%9F%E7%BD%91%E7%BB%9C%E7%A7%91%E6%8A%80%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8; think_language=zh-cn; SERVERID=a66d7d08fa1c8b2e37dbdc6ffff82d9e|1444973193|1444967835; CNZZDATA1254842228=1433864393-1442810831-%7C1444972138"  # 从浏览器拷贝cookie字符串
    headers = {
      'User-Agent': 'mozilla/5.0 (compatible; baiduspider/2.0; +http://www.baidu.com/search/spider.html)',
      'cookie': cookies_str
    }
    return super(MySpider, self).fetch(  # 参数参考tornado文档
      url, headers=headers, request_timeout=1
    )

  def handle_html(self, url, html):
    print(url, html)


def main():
  urls = []
  for page in range(1, 100):
    urls.append('http://www.baidu.com?page=%s' % page)
  s = MySpider(urls)
  s.run()


if __name__ == '__main__':
  main()

可以继承这个类,塞一些url进去,然后重写handle_page处理得到的页面。

异步+多进程爬虫
还可以再变态点,加个进程池,使用了multiprocessing模块。效率飕飕的,

#!/usr/bin/env python
# -*- coding:utf-8 -*-

import time
from multiprocessing import Pool
from datetime import timedelta
from tornado import httpclient, gen, ioloop, queues


class AsySpider(object):
  """A simple class of asynchronous spider."""
  def __init__(self, urls, concurrency):
    urls.reverse()
    self.urls = urls
    self.concurrency = concurrency
    self._q = queues.Queue()
    self._fetching = set()
    self._fetched = set()

  def handle_page(self, url, html):
    filename = url.rsplit('/', 1)[1]
    with open(filename, 'w+') as f:
      f.write(html)

  @gen.coroutine
  def get_page(self, url):
    try:
      response = yield httpclient.AsyncHTTPClient().fetch(url)
      print('######fetched %s' % url)
    except Exception as e:
      print('Exception: %s %s' % (e, url))
      raise gen.Return('')
    raise gen.Return(response.body)

  @gen.coroutine
  def _run(self):

    @gen.coroutine
    def fetch_url():
      current_url = yield self._q.get()
      try:
        if current_url in self._fetching:
          return

        print('fetching****** %s' % current_url)
        self._fetching.add(current_url)
        html = yield self.get_page(current_url)
        self._fetched.add(current_url)

        self.handle_page(current_url, html)

        for i in range(self.concurrency):
          if self.urls:
            yield self._q.put(self.urls.pop())

      finally:
        self._q.task_done()

    @gen.coroutine
    def worker():
      while True:
        yield fetch_url()

    self._q.put(self.urls.pop())

    # Start workers, then wait for the work queue to be empty.
    for _ in range(self.concurrency):
      worker()
    yield self._q.join(timeout=timedelta(seconds=300000))
    assert self._fetching == self._fetched

  def run(self):
    io_loop = ioloop.IOLoop.current()
    io_loop.run_sync(self._run)


def run_spider(beg, end):
  urls = []
  for page in range(beg, end):
    urls.append('http://127.0.0.1/%s.htm' % page)
  s = AsySpider(urls, 10)
  s.run()


def main():
  _st = time.time()
  p = Pool()
  all_num = 73000
  num = 4  # number of cpu cores
  per_num, left = divmod(all_num, num)
  s = range(0, all_num, per_num)
  res = []
  for i in range(len(s)-1):
    res.append((s[i], s[i+1]))
  res.append((s[len(s)-1], all_num))
  print res

  for i in res:
    p.apply_async(run_spider, args=(i[0], i[1],))
  p.close()
  p.join()

  print time.time()-_st


if __name__ == '__main__':
  main()

多线程爬虫
线程池实现.

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import Queue
import sys
import requests
import os
import threading
import time

class Worker(threading.Thread):  # 处理工作请求
  def __init__(self, workQueue, resultQueue, **kwds):
    threading.Thread.__init__(self, **kwds)
    self.setDaemon(True)
    self.workQueue = workQueue
    self.resultQueue = resultQueue


  def run(self):
    while 1:
      try:
        callable, args, kwds = self.workQueue.get(False)  # get task
        res = callable(*args, **kwds)
        self.resultQueue.put(res)  # put result
      except Queue.Empty:
        break

class WorkManager:  # 线程池管理,创建
  def __init__(self, num_of_workers=10):
    self.workQueue = Queue.Queue()  # 请求队列
    self.resultQueue = Queue.Queue()  # 输出结果的队列
    self.workers = []
    self._recruitThreads(num_of_workers)

  def _recruitThreads(self, num_of_workers):
    for i in range(num_of_workers):
      worker = Worker(self.workQueue, self.resultQueue)  # 创建工作线程
      self.workers.append(worker)  # 加入到线程队列


  def start(self):
    for w in self.workers:
      w.start()

  def wait_for_complete(self):
    while len(self.workers):
      worker = self.workers.pop()  # 从池中取出一个线程处理请求
      worker.join()
      if worker.isAlive() and not self.workQueue.empty():
        self.workers.append(worker)  # 重新加入线程池中
    print 'All jobs were complete.'


  def add_job(self, callable, *args, **kwds):
    self.workQueue.put((callable, args, kwds))  # 向工作队列中加入请求

  def get_result(self, *args, **kwds):
    return self.resultQueue.get(*args, **kwds)


def download_file(url):
  #print 'beg download', url
  requests.get(url).text


def main():
  try:
    num_of_threads = int(sys.argv[1])
  except:
    num_of_threads = 10
  _st = time.time()
  wm = WorkManager(num_of_threads)
  print num_of_threads
  urls = ['http://www.baidu.com'] * 1000
  for i in urls:
    wm.add_job(download_file, i)
  wm.start()
  wm.wait_for_complete()
  print time.time() - _st

if __name__ == '__main__':
  main()

这三种随便一种都有很高的效率,但是这么跑会给网站服务器不小的压力,尤其是小站点,还是有点节操为好。

Python 相关文章推荐
Python中的字符串替换操作示例
Jun 27 Python
python dict 字典 以及 赋值 引用的一些实例(详解)
Jan 20 Python
浅谈Python中重载isinstance继承关系的问题
May 04 Python
解决python升级引起的pip执行错误的问题
Jun 12 Python
详解python 注释、变量、类型
Aug 10 Python
python多线程并发让两个LED同时亮的方法
Feb 18 Python
Appium+python自动化怎么查看程序所占端口号和IP
Jun 14 Python
python数据挖掘需要学的内容
Jun 23 Python
Python搭建代理IP池实现存储IP的方法
Oct 27 Python
windows下Pycharm安装opencv的多种方法
Mar 05 Python
PyCharm+Pipenv虚拟环境开发和依赖管理的教程详解
Apr 16 Python
Pycharm调试程序技巧小结
Aug 08 Python
玩转python爬虫之爬取糗事百科段子
Feb 17 #Python
玩转python爬虫之正则表达式
Feb 17 #Python
玩转python爬虫之URLError异常处理
Feb 17 #Python
玩转python爬虫之cookie使用方法
Feb 17 #Python
Python 爬虫爬取指定博客的所有文章
Feb 17 #Python
Using Django with GAE Python 后台抓取多个网站的页面全文
Feb 17 #Python
python实现RSA加密(解密)算法
Feb 17 #Python
You might like
php中通过smtp发邮件的类,测试通过
2007/01/22 PHP
php做下载文件的实现代码及文件名中乱码解决方法
2011/02/03 PHP
PHP简洁函数(PHP简单明了函数语法)
2012/06/10 PHP
基于php中使用excel的简单介绍
2013/08/02 PHP
php输出1000以内质数(素数)示例
2014/02/16 PHP
PHP判断数组是否为空的常用方法(五种方法)
2017/02/08 PHP
PHP中的日期时间处理利器实例(Carbon)
2017/06/09 PHP
PHP使用PDO、mysqli扩展实现与数据库交互操作详解
2019/07/20 PHP
JavaScript效率调优经验
2009/06/04 Javascript
json数据的列循环示例
2013/09/06 Javascript
js格式化输入框内金额、银行卡号
2016/02/01 Javascript
jquery中键盘事件小结
2016/02/24 Javascript
javascript弹出窗口中增加确定取消按钮
2016/06/24 Javascript
AngularJS入门教程之双向绑定详解
2016/08/18 Javascript
分享JavaScript监听全部Ajax请求事件的方法
2016/08/28 Javascript
JavaScript String(字符串)对象的简单实例(推荐)
2016/08/31 Javascript
详解JavaScript权威指南之对象
2016/09/27 Javascript
Ajax和Comet技术总结
2017/02/19 Javascript
js 公式编辑器 - 自定义匹配规则 - 带提示下拉框 - 动态获取光标像素坐标
2018/01/04 Javascript
12条写出高质量JS代码的方法
2018/01/07 Javascript
vue内置指令详解
2018/04/03 Javascript
JavaScript实现的简单Tab点击切换功能示例
2018/07/06 Javascript
解决layui前端框架 form表单,table表等内置控件不显示的问题
2018/08/19 Javascript
JS实现贪吃蛇游戏
2019/11/15 Javascript
python中stdout输出不缓存的设置方法
2014/05/29 Python
Python编程使用NLTK进行自然语言处理详解
2017/11/16 Python
jupyter notebook插入本地图片的实现
2020/04/13 Python
Python3爬虫中关于Ajax分析方法的总结
2020/07/10 Python
Python实现Word文档转换Markdown的示例
2020/12/22 Python
使用HTML5 IndexDB存储图像和文件的示例
2018/11/05 HTML / CSS
HTML5 拖放功能实现代码
2016/07/14 HTML / CSS
StubHub智利:购买和出售您的门票
2016/11/23 全球购物
英国最大的宝石首饰超市:QP Jewellers
2018/09/23 全球购物
馥蕾诗美国官网:Fresh美国
2019/10/09 全球购物
职业生涯规划设计步骤
2014/01/12 职场文书
社团活动总结范文
2014/04/26 职场文书