一小时学会TensorFlow2之基本操作2实例代码


Posted in Python onSeptember 04, 2021

索引操作

一小时学会TensorFlow2之基本操作2实例代码

简单索引

索引 (index) 可以帮助我们快速的找到张量中的特定信息.

例子:

a = tf.reshape(tf.range(12), [2, 2, 3])
print(a)

print(a[0])
print(a[0][0])

输出结果:

tf.Tensor(
[[[ 0 1 2]
[ 3 4 5]]

[[ 6 7 8]
[ 9 10 11]]], shape=(2, 2, 3), dtype=int32)
tf.Tensor(
[[0 1 2]
[3 4 5]], shape=(2, 3), dtype=int32)
tf.Tensor([0 1 2], shape=(3,), dtype=int32)

Numpy 式索引

我们也可以按照 numpy 的写法来操作索引.

例子:

a = tf.reshape(tf.range(12), [2, 2, 3])
print(a)

print(a[0])
print(a[0, 0])

输出结果:

tf.Tensor(
[[[ 0 1 2]
[ 3 4 5]]

[[ 6 7 8]
[ 9 10 11]]], shape=(2, 2, 3), dtype=int32)
tf.Tensor(
[[0 1 2]
[3 4 5]], shape=(2, 3), dtype=int32)
tf.Tensor([0 1 2], shape=(3,), dtype=int32)

使用 : 进行索引

例子:

c = tf.ones([4, 14, 14, 4])
print(c[0, :, :, :].shape)
print(c[0, 1, :, :].shape)

输出结果:

(14, 14, 4)
(14, 4)

tf.gather

我们假设一个有 3 个餐馆, 每个餐馆有 8 种菜系, 128 道菜data: [resturants, cuisines, dishes].

一小时学会TensorFlow2之基本操作2实例代码

例子:

data = tf.zeros([3, 8, 128])

g1 = tf.gather(data, axis=0, indices=[0, 2])
print(g1.shape)

g2 = tf.gather(data, axis=1, indices=[0, 1, 2, 3])
print(g2.shape)

输出结果:

(2, 8, 128)
(3, 4, 128)

tf.gather_nd

例子:

g1 = tf.gather_nd(data, [0])
print(g1.shape)

g2 = tf.gather_nd(data, [0, 1])
print(g2.shape)

g3 = tf.gather_nd(data, [0, 1, 2])
print(g3.shape)

输出结果:

(8, 128)
(128,)
()

tf.boolean_mask

格式:

tf.boolean_mask(
    tensor, mask, axis=None, name='boolean_mask'
)

例子:

data = tf.zeros([3, 8, 128])

b1 = tf.boolean_mask(data, mask=[True, True, False])
print(b1.shape)

b2 = tf.boolean_mask(data, mask=[True, False, True, False, True, False, True, False], axis=1)
print(b2.shape)

输出结果:

(2, 8, 128)
(3, 4, 128)

切片操作

借助切片技术, 我们可以灵活的处理张量对象.

一小时学会TensorFlow2之基本操作2实例代码

简单切片

格式:

tensor[start : end]

其中 start 为开始索引, end 为结束索引 (不包括)

例子:

tf.Tensor([0 1 2], shape=(3,), dtype=int32)
tf.Tensor([9], shape=(1,), dtype=int32)
tf.Tensor([0 1 2 3 4 5 6 7 8], shape=(9,), dtype=int32)

step 切片

格式:

tensor[start : end: step]

例子:

d = tf.range(6)
print(d[::-1])  # 实现倒序
print(d[::2])  # 步长为2

输出结果:

tf.Tensor([5 4 3 2 1 0], shape=(6,), dtype=int32)
tf.Tensor([0 2 4], shape=(3,), dtype=int32)

维度变换

一小时学会TensorFlow2之基本操作2实例代码

tf.reshape

tf.reshape 可以帮助我们进行维度转换.

格式:

tf.reshape(
    tensor, shape, name=None
)

参数:

  • tensor: 传入的张量
  • shape: 张量的形状
  • name: 数据名称

例子:

a = tf.random.normal([3, 8, 128])
print(a.shape)

b = tf.reshape(a, [3, 1024])
print(b.shape)

c = tf.reshape(a, [3, -1])
print(c.shape)

输出结果:

(3, 8, 128)
(3, 1024)
(3, 1024)

tf.transpose

格式:

tf.transpose(
    a, perm=None, conjugate=False, name='transpose'
)

例子:

a = tf.random.normal([4, 3, 2, 1])
print(a.shape)

b = tf.transpose(a)
print(b.shape)

c = tf.transpose(a, perm=[0, 1, 3, 2])
print(c.shape)

输出结果:

(4, 3, 2, 1)
(1, 2, 3, 4)
(4, 3, 1, 2)

tf.expand_dims

格式:

tf.expand_dims(
    input, axis, name=None
)

参数:

  • input: 输入
  • axis: 操作的维度
  • name: 数据名称

例子:

a = tf.random.normal([4, 3, 2, 1])
print(a.shape)

b = tf.expand_dims(a, axis=0)
print(b.shape)

c = tf.expand_dims(a, axis=1)
print(c.shape)

d = tf.expand_dims(a, axis=-1)
print(d.shape)

输出结果:

(4, 3, 2, 1)
(1, 4, 3, 2, 1)
(4, 1, 3, 2, 1)
(4, 3, 2, 1, 1)

tf.squeeze

tf.squeeze 可以帮助我们删去所有维度为1 的维度.

一小时学会TensorFlow2之基本操作2实例代码

格式:

tf.squeeze(
    input, axis=None, name=None
)

参数:

  • input: 输入
  • axis: 操作的维度
  • name: 数据名称

例子:

a = tf.zeros([2, 1, 1, 3, 5])

s1 = tf.squeeze(a)
print(s1.shape)

s2 = tf.squeeze(a, axis=1)
print(s2.shape)

s3 = tf.squeeze(a, axis=2)
print(s3.shape)

输出结果:

(2, 3, 5)
(2, 1, 3, 5)
(2, 1, 3, 5)

Boardcasting

广播机制 (Boardcasting) 是一种张量复制的手段. Boardcasting 可以帮助我们扩张张量的形状但无需实际复制数据.

一小时学会TensorFlow2之基本操作2实例代码

广播机制允许我们在隐式情况下进行填充, 从而使得我们的代码更加简洁, 更有效率地使用内存.

tf.boardcast_to

boardcast_to:

tf.broadcast_to(
    input, shape, name=None
)

参数:

  • input: 输入
  • shape: 数据形状
  • name: 数据名称

例子:

a = tf.broadcast_to(tf.random.normal([4, 1, 1, 1]), [4, 32, 32, 3])
print(a.shape)

b = tf.broadcast_to(tf.zeros([128, 1, 1, 1]), [128, 32, 32, 3])
print(b.shape)

输出结果:

(4, 32, 32, 3)
(128, 32, 32, 3)

tf.tile

格式:

tf.tile(
    input, multiples, name=None
)

参数:

  • input: 输入
  • multiples: 同一纬度上复制的次数
  • name: 数据名称

例子:

a = tf.zeros([4, 1, 1, 1])
print(a.shape)

b = tf.tile(a, [1, 32, 32, 3])
print(b.shape)

输出结果:

(4, 1, 1, 1)
(4, 32, 32, 3)

注: boardcast_to 和 tile 的区别在于 boardcast_to 可以在不复制内存的情况下自动扩张 tensor.

数学运算

一小时学会TensorFlow2之基本操作2实例代码

加减乘除

例子:

# 定义张量
t1 = tf.ones([3, 3])
t2 = tf.fill([3, 3], 3.0)

# 加
add = t1 + t2
print(add)

# 减
minus = t1 - t2
print(minus)

# 乘
multiply = t1 * t2
print(multiply)

# 除
divide = t1 / t2
print(divide)

输出结果:

tf.Tensor(
[[4. 4. 4.]
[4. 4. 4.]
[4. 4. 4.]], shape=(3, 3), dtype=float32)
tf.Tensor(
[[-2. -2. -2.]
[-2. -2. -2.]
[-2. -2. -2.]], shape=(3, 3), dtype=float32)
tf.Tensor(
[[3. 3. 3.]
[3. 3. 3.]
[3. 3. 3.]], shape=(3, 3), dtype=float32)
tf.Tensor(
[[0.33333334 0.33333334 0.33333334]
[0.33333334 0.33333334 0.33333334]
[0.33333334 0.33333334 0.33333334]], shape=(3, 3), dtype=float32)

log & exp

例子:

# log
a = tf.fill([2], 100.0)
print(a)

b = tf.math.log(a)  # 以e为底
print(b)

# exp
c = tf.ones([2])
print(c)

d = tf.exp(c)
print(d)

输出结果:

tf.Tensor([100. 100.], shape=(2,), dtype=float32)
tf.Tensor([4.6051702 4.6051702], shape=(2,), dtype=float32)
tf.Tensor([1. 1.], shape=(2,), dtype=float32)
tf.Tensor([2.7182817 2.7182817], shape=(2,), dtype=float32)

pow & sqrt

例子:

# 定义张量
a = tf.fill([2], 4.0)
print(a)

# pow
b = tf.pow(a, 2)
print(b)

# sqrt
c = tf.sqrt(a, 2)
print(c)

输出结果:

tf.Tensor([4. 4.], shape=(2,), dtype=float32)
tf.Tensor([16. 16.], shape=(2,), dtype=float32)
tf.Tensor([2. 2.], shape=(2,), dtype=float32)

矩阵相乘 @

我们可以使用tf.matmul@来实现矩阵相乘.

一小时学会TensorFlow2之基本操作2实例代码

例子:

# 定义张量
a = tf.fill([2, 2], 2)
b = tf.fill([2, 2], 3)

# matmul
c = tf.matmul(a, b)
print(c)

# @
d = a@b
print(d)

输出结果:

tf.Tensor(
[[12 12]
[12 12]], shape=(2, 2), dtype=int32)
tf.Tensor(
[[12 12]
[12 12]], shape=(2, 2), dtype=int32)

到此这篇关于一小时学会TensorFlow2之基本操作2实例代码的文章就介绍到这了,更多相关TensorFlow2基本操作内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python中字典dict常用操作方法实例总结
Apr 04 Python
Python+OpenCV目标跟踪实现基本的运动检测
Jul 10 Python
深入浅析Python中list的复制及深拷贝与浅拷贝
Sep 03 Python
Python字符串匹配之6种方法的使用详解
Apr 08 Python
python 使用装饰器并记录log的示例代码
Jul 12 Python
Python 用matplotlib画以时间日期为x轴的图像
Aug 06 Python
Python Django框架防御CSRF攻击的方法分析
Oct 18 Python
解决django-xadmin列表页filter关联对象搜索问题
Nov 15 Python
解决pycharm启动后总是不停的updating indices...indexing的问题
Nov 27 Python
flask利用flask-wtf验证上传的文件的方法
Jan 17 Python
Django用数据库表反向生成models类知识点详解
Mar 25 Python
Python极值整数的边界探讨分析
Sep 15 Python
Python torch.flatten()函数案例详解
Aug 30 #Python
Python之基础函数案例详解
Aug 30 #Python
python中使用 unittest.TestCase单元测试的用例详解
Aug 30 #Python
python使用matplotlib绘制图片时x轴的刻度处理
使用Python+OpenCV进行卡类型及16位卡号数字的OCR功能
Aug 30 #Python
OpenCV绘制圆端矩形的示例代码
Aug 30 #Python
python中super()函数的理解与基本使用
You might like
PHP+AJAX实现无刷新注册(带用户名实时检测)
2006/12/02 PHP
分享PHP header函数使用教程
2013/09/05 PHP
PHP的JSON封装、转变及输出操作示例
2019/09/27 PHP
定义select的边框颜色
2008/04/28 Javascript
浅析document.createDocumentFragment()与js效率
2013/07/08 Javascript
JQuery选择器绑定事件及修改内容的方法
2015/01/23 Javascript
jquery地址栏链接与a标签链接匹配之特效代码总结
2015/08/24 Javascript
分享五个有用的jquery小技巧
2015/10/08 Javascript
CKEditor无法验证的解决方案(js验证+jQuery Validate验证)
2016/05/09 Javascript
Bootstrap图片轮播组件使用实例解析
2016/06/30 Javascript
javascript中数组和字符串的方法对比
2016/07/20 Javascript
jQuery实现表格文本框淡入更改值后淡出效果
2016/09/27 Javascript
node.js中express中间件body-parser的介绍与用法详解
2017/05/23 Javascript
jquery插件开发之选项卡制作详解
2017/08/30 jQuery
Node.js实现连接mysql数据库功能示例
2017/09/15 Javascript
JavaScript中call和apply方法的区别实例分析
2018/08/03 Javascript
Python 深入理解yield
2008/09/06 Python
Python OS模块常用函数说明
2015/05/23 Python
Python抽象类的新写法
2015/06/18 Python
Python科学计算之Pandas详解
2017/01/15 Python
Python跨文件全局变量的实现方法示例
2017/12/10 Python
Python验证文件是否可读写代码分享
2017/12/11 Python
python 对key为时间的dict排序方法
2018/10/17 Python
html5简介_动力节点Java学院整理
2017/07/07 HTML / CSS
介绍一下Java的安全机制
2012/06/28 面试题
中西医结合临床医学专业大学生自荐信
2013/09/28 职场文书
大学教师年终总结的自我评价
2013/10/29 职场文书
工地安全检查制度
2014/02/04 职场文书
关于成绩下滑的自我检讨书
2014/09/20 职场文书
2014年调度员工作总结
2014/11/19 职场文书
2015关于重阳节的演讲稿
2015/03/20 职场文书
庆元旦主持词
2015/07/06 职场文书
让文件路径提取变得更简单的Python Path库
2021/05/27 Python
基于JavaScript实现省市联动效果
2021/06/22 Javascript
Java日常练习题,每天进步一点点(38)
2021/07/26 Java/Android
一文带你探究MySQL中的NULL
2021/11/11 MySQL