Pytorch 使用CNN图像分类的实现


Posted in Python onJune 16, 2020

需求

在4*4的图片中,比较外围黑色像素点和内圈黑色像素点个数的大小将图片分类

Pytorch 使用CNN图像分类的实现

如上图图片外围黑色像素点5个大于内圈黑色像素点1个分为0类反之1类

想法

  • 通过numpy、PIL构造4*4的图像数据集
  • 构造自己的数据集类
  • 读取数据集对数据集选取减少偏斜
  • cnn设计因为特征少,直接1*1卷积层
  • 或者在4*4外围添加padding成6*6,设计2*2的卷积核得出3*3再接上全连接层

代码

import torch
import torchvision
import torchvision.transforms as transforms
import numpy as np
from PIL import Image

构造数据集

import csv
import collections
import os
import shutil

def buildDataset(root,dataType,dataSize):
  """构造数据集
  构造的图片存到root/{dataType}Data
  图片地址和标签的csv文件存到 root/{dataType}DataInfo.csv
  Args:
    root:str
      项目目录
    dataType:str
      'train'或者‘test'
    dataNum:int
      数据大小
  Returns:
  """
  dataInfo = []
  dataPath = f'{root}/{dataType}Data'
  if not os.path.exists(dataPath):
    os.makedirs(dataPath)
  else:
    shutil.rmtree(dataPath)
    os.mkdir(dataPath)
    
  for i in range(dataSize):
    # 创建0,1 数组
    imageArray=np.random.randint(0,2,(4,4))
    # 计算0,1数量得到标签
    allBlackNum = collections.Counter(imageArray.flatten())[0]
    innerBlackNum = collections.Counter(imageArray[1:3,1:3].flatten())[0]
    label = 0 if (allBlackNum-innerBlackNum)>innerBlackNum else 1
    # 将图片保存
    path = f'{dataPath}/{i}.jpg'
    dataInfo.append([path,label])
    im = Image.fromarray(np.uint8(imageArray*255))
    im = im.convert('1') 
    im.save(path)
  # 将图片地址和标签存入csv文件
  filePath = f'{root}/{dataType}DataInfo.csv'
  with open(filePath, 'w') as f:
    writer = csv.writer(f)
    writer.writerows(dataInfo)
root=r'/Users/null/Documents/PythonProject/Classifier'

构造训练数据集

buildDataset(root,'train',20000)

构造测试数据集

buildDataset(root,'test',10000)

读取数据集

class MyDataset(torch.utils.data.Dataset):

  def __init__(self, root, datacsv, transform=None):
    super(MyDataset, self).__init__()
    with open(f'{root}/{datacsv}', 'r') as f:
      imgs = []
      # 读取csv信息到imgs列表
      for path,label in map(lambda line:line.rstrip().split(','),f):
        imgs.append((path, int(label)))
    self.imgs = imgs
    self.transform = transform if transform is not None else lambda x:x
    
  def __getitem__(self, index):
    path, label = self.imgs[index]
    img = self.transform(Image.open(path).convert('1'))
    return img, label

  def __len__(self):
    return len(self.imgs)
trainData=MyDataset(root = root,datacsv='trainDataInfo.csv', transform=transforms.ToTensor())
testData=MyDataset(root = root,datacsv='testDataInfo.csv', transform=transforms.ToTensor())

处理数据集使得数据集不偏斜

import itertools

def chooseData(dataset,scale):
  # 将类别为1的排序到前面
  dataset.imgs.sort(key=lambda x:x[1],reverse=True)
  # 获取类别1的数目 ,取scale倍的数组,得数据不那么偏斜
  trueNum =collections.Counter(itertools.chain.from_iterable(dataset.imgs))[1]
  end = min(trueNum*scale,len(dataset))
  dataset.imgs=dataset.imgs[:end]
scale = 4
chooseData(trainData,scale)
chooseData(testData,scale)
len(trainData),len(testData)
(2250, 1122)
import torch.utils.data as Data

# 超参数
batchSize = 50
lr = 0.1
numEpochs = 20

trainIter = Data.DataLoader(dataset=trainData, batch_size=batchSize, shuffle=True)
testIter = Data.DataLoader(dataset=testData, batch_size=batchSize)

定义模型

from torch import nn
from torch.autograd import Variable
from torch.nn import Module,Linear,Sequential,Conv2d,ReLU,ConstantPad2d
import torch.nn.functional as F
class Net(Module):  
  def __init__(self):
    super(Net, self).__init__()

    self.cnnLayers = Sequential(
      # padding添加1层常数1,设定卷积核为2*2
      ConstantPad2d(1, 1),
      Conv2d(1, 1, kernel_size=2, stride=2,bias=True)
    )
    self.linearLayers = Sequential(
      Linear(9, 2)
    )

  def forward(self, x):
    x = self.cnnLayers(x)
    x = x.view(x.shape[0], -1)
    x = self.linearLayers(x)
    return x
class Net2(Module):  
  def __init__(self):
    super(Net2, self).__init__()

    self.cnnLayers = Sequential(
      Conv2d(1, 1, kernel_size=1, stride=1,bias=True)
    )
    self.linearLayers = Sequential(
      ReLU(),
      Linear(16, 2)
    )

  def forward(self, x):
    x = self.cnnLayers(x)
    x = x.view(x.shape[0], -1)
    x = self.linearLayers(x)
    return x

定义损失函数

# 交叉熵损失函数
loss = nn.CrossEntropyLoss()
loss2 = nn.CrossEntropyLoss()

定义优化算法

net = Net()
optimizer = torch.optim.SGD(net.parameters(),lr = lr)
net2 = Net2()
optimizer2 = torch.optim.SGD(net2.parameters(),lr = lr)

训练模型

# 计算准确率
def evaluateAccuracy(dataIter, net):
  accSum, n = 0.0, 0
  with torch.no_grad():
    for X, y in dataIter:
      accSum += (net(X).argmax(dim=1) == y).float().sum().item()
      n += y.shape[0]
  return accSum / n
def train(net, trainIter, testIter, loss, numEpochs, batchSize,
       optimizer):
  for epoch in range(numEpochs):
    trainLossSum, trainAccSum, n = 0.0, 0.0, 0
    for X,y in trainIter:
      yHat = net(X)
      l = loss(yHat,y).sum()
      optimizer.zero_grad()
      l.backward()
      optimizer.step()
      # 计算训练准确度和loss
      trainLossSum += l.item()
      trainAccSum += (yHat.argmax(dim=1) == y).sum().item()
      n += y.shape[0]
    # 评估测试准确度
    testAcc = evaluateAccuracy(testIter, net)
    print('epoch {:d}, loss {:.4f}, train acc {:.3f}, test acc {:.3f}'.format(epoch + 1, trainLossSum / n, trainAccSum / n, testAcc))

Net模型训练

train(net, trainIter, testIter, loss, numEpochs, batchSize,optimizer)
epoch 1, loss 0.0128, train acc 0.667, test acc 0.667
epoch 2, loss 0.0118, train acc 0.683, test acc 0.760
epoch 3, loss 0.0104, train acc 0.742, test acc 0.807
epoch 4, loss 0.0093, train acc 0.769, test acc 0.772
epoch 5, loss 0.0085, train acc 0.797, test acc 0.745
epoch 6, loss 0.0084, train acc 0.798, test acc 0.807
epoch 7, loss 0.0082, train acc 0.804, test acc 0.816
epoch 8, loss 0.0078, train acc 0.816, test acc 0.812
epoch 9, loss 0.0077, train acc 0.818, test acc 0.817
epoch 10, loss 0.0074, train acc 0.824, test acc 0.826
epoch 11, loss 0.0072, train acc 0.836, test acc 0.819
epoch 12, loss 0.0075, train acc 0.823, test acc 0.829
epoch 13, loss 0.0071, train acc 0.839, test acc 0.797
epoch 14, loss 0.0067, train acc 0.849, test acc 0.824
epoch 15, loss 0.0069, train acc 0.848, test acc 0.843
epoch 16, loss 0.0064, train acc 0.864, test acc 0.851
epoch 17, loss 0.0062, train acc 0.867, test acc 0.780
epoch 18, loss 0.0060, train acc 0.871, test acc 0.864
epoch 19, loss 0.0057, train acc 0.881, test acc 0.890
epoch 20, loss 0.0055, train acc 0.885, test acc 0.897

Net2模型训练

# batchSize = 50 
# lr = 0.1
# numEpochs = 15 下得出的结果
train(net2, trainIter, testIter, loss2, numEpochs, batchSize,optimizer2)

epoch 1, loss 0.0119, train acc 0.638, test acc 0.676
epoch 2, loss 0.0079, train acc 0.823, test acc 0.986
epoch 3, loss 0.0046, train acc 0.987, test acc 0.977
epoch 4, loss 0.0030, train acc 0.983, test acc 0.973
epoch 5, loss 0.0023, train acc 0.981, test acc 0.976
epoch 6, loss 0.0019, train acc 0.980, test acc 0.988
epoch 7, loss 0.0016, train acc 0.984, test acc 0.984
epoch 8, loss 0.0014, train acc 0.985, test acc 0.986
epoch 9, loss 0.0013, train acc 0.987, test acc 0.992
epoch 10, loss 0.0011, train acc 0.989, test acc 0.993
epoch 11, loss 0.0010, train acc 0.989, test acc 0.996
epoch 12, loss 0.0010, train acc 0.992, test acc 0.994
epoch 13, loss 0.0009, train acc 0.993, test acc 0.994
epoch 14, loss 0.0008, train acc 0.995, test acc 0.996
epoch 15, loss 0.0008, train acc 0.994, test acc 0.998

测试

test = torch.Tensor([[[[0,0,0,0],[0,1,1,0],[0,1,1,0],[0,0,0,0]]],
         [[[1,1,1,1],[1,0,0,1],[1,0,0,1],[1,1,1,1]]],
         [[[0,1,0,1],[1,0,0,1],[1,0,0,1],[0,0,0,1]]],
         [[[0,1,1,1],[1,0,0,1],[1,0,0,1],[0,0,0,1]]],
         [[[0,0,1,1],[1,0,0,1],[1,0,0,1],[1,0,1,0]]],
         [[[0,0,1,0],[0,1,0,1],[0,0,1,1],[1,0,1,0]]],
         [[[1,1,1,0],[1,0,0,1],[1,0,1,1],[1,0,1,1]]]
         ])

target=torch.Tensor([0,1,0,1,1,0,1])
test
tensor([[[[0., 0., 0., 0.],
     [0., 1., 1., 0.],
     [0., 1., 1., 0.],
     [0., 0., 0., 0.]]],

​

    [[[1., 1., 1., 1.],
     [1., 0., 0., 1.],
     [1., 0., 0., 1.],
     [1., 1., 1., 1.]]],

​

    [[[0., 1., 0., 1.],
     [1., 0., 0., 1.],
     [1., 0., 0., 1.],
     [0., 0., 0., 1.]]],

​

    [[[0., 1., 1., 1.],
     [1., 0., 0., 1.],
     [1., 0., 0., 1.],
     [0., 0., 0., 1.]]],

​

    [[[0., 0., 1., 1.],
     [1., 0., 0., 1.],
     [1., 0., 0., 1.],
     [1., 0., 1., 0.]]],

​

    [[[0., 0., 1., 0.],
     [0., 1., 0., 1.],
     [0., 0., 1., 1.],
     [1., 0., 1., 0.]]],

​

    [[[1., 1., 1., 0.],
     [1., 0., 0., 1.],
     [1., 0., 1., 1.],
     [1., 0., 1., 1.]]]])



with torch.no_grad():
  output = net(test)
  output2 = net2(test)
predictions =output.argmax(dim=1)
predictions2 =output2.argmax(dim=1)
# 比较结果
print(f'Net测试结果{predictions.eq(target)}')
print(f'Net2测试结果{predictions2.eq(target)}')
Net测试结果tensor([ True, True, False, True, True, True, True])
Net2测试结果tensor([False, True, False, True, True, False, True])

到此这篇关于Pytorch 使用CNN图像分类的实现的文章就介绍到这了,更多相关Pytorch CNN图像分类内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python计算一个文件里字数的方法
Jun 15 Python
Python设计模式中单例模式的实现及在Tornado中的应用
Mar 02 Python
Python requests发送post请求的一些疑点
May 20 Python
python3实现表白神器
Apr 09 Python
Python中新式类与经典类的区别详析
Jul 10 Python
关于Python3 lambda函数的深入浅出
Nov 27 Python
在pytorch 中计算精度、回归率、F1 score等指标的实例
Jan 18 Python
pycharm内无法import已安装的模块问题解决
Feb 12 Python
Django自定义全局403、404、500错误页面的示例代码
Mar 08 Python
OpenCV利用python来实现图像的直方图均衡化
Oct 21 Python
Python数据类型最全知识总结
May 31 Python
Python 数据结构之十大经典排序算法一文通关
Oct 16 Python
利用python中的matplotlib打印混淆矩阵实例
Jun 16 #Python
Python SMTP配置参数并发送邮件
Jun 16 #Python
基于matplotlib中ion()和ioff()的使用详解
Jun 16 #Python
Python数据相关系数矩阵和热力图轻松实现教程
Jun 16 #Python
matplotlib.pyplot.matshow 矩阵可视化实例
Jun 16 #Python
使用python matploblib库绘制准确率,损失率折线图
Jun 16 #Python
为什么称python为胶水语言
Jun 16 #Python
You might like
ThinkPHP实现动态包含文件的方法
2014/11/29 PHP
PHP实现的简单缓存类
2015/07/29 PHP
Yii2 rbac权限控制之rule教程详解
2016/06/23 PHP
PHP页面跳转实现延时跳转的方法
2016/12/10 PHP
php实现不通过扩展名准确判断文件类型的方法【finfo_file方法与二进制流】
2017/04/18 PHP
Yii2框架可逆加密简单实现方法
2017/08/25 PHP
php基于 swoole 实现的异步处理任务功能示例
2019/08/13 PHP
Javascript学习笔记9 prototype封装继承
2010/01/11 Javascript
jquery下将选择的checkbox的id组成字符串的方法
2010/11/28 Javascript
js 判断一个元素是否在页面中存在
2012/12/27 Javascript
你必须知道的Javascript知识点之"单线程事件驱动"的使用
2013/04/23 Javascript
js获取窗口相对于屏幕左边和上边的位置坐标
2014/05/15 Javascript
使用upstart把nodejs应用封装为系统服务实例
2014/06/01 NodeJs
JavaScript里 ==与===区别详解
2016/08/16 Javascript
JavaScript中数组Array.sort()排序方法详解
2017/03/01 Javascript
vue项目中实现图片预览的公用组件功能
2018/10/26 Javascript
ionic使用angularjs表单验证(模板验证)
2018/12/12 Javascript
通过实例解析jQ Ajax操作相关原理
2020/09/23 Javascript
python基于phantomjs实现导入图片
2016/05/13 Python
django 通过ajax完成邮箱用户注册、激活账号的方法
2018/04/17 Python
django之自定义软删除Model的方法
2019/08/14 Python
python GUI库图形界面开发之PyQt5 Qt Designer工具(Qt设计师)详细使用方法及Designer ui文件转py文件方法
2020/02/26 Python
Python面向对象程序设计之类和对象、实例变量、类变量用法分析
2020/03/23 Python
Python爬虫回测股票的实例讲解
2021/01/22 Python
详解用selenium来下载小姐姐图片并保存
2021/01/26 Python
css3给背景图片加颜色遮罩的方法
2019/11/05 HTML / CSS
Mamas & Papas沙特阿拉伯:英国最受欢迎的婴儿品牌
2017/11/20 全球购物
卖车协议书范例
2014/09/16 职场文书
教师批评与自我批评
2014/10/15 职场文书
致800米运动员广播稿(10篇)
2014/10/17 职场文书
公司2014年度工作总结
2014/12/10 职场文书
2015年小班保育员工作总结
2015/05/27 职场文书
小学生大队委竞选稿
2015/11/20 职场文书
Go使用协程交替打印字符
2021/04/29 Golang
python之np.argmax()及对axis=0或者1的理解
2021/06/02 Python
HTML基本元素标签介绍
2022/02/28 HTML / CSS