PyQt5+Caffe+Opencv搭建人脸识别登录界面


Posted in Python onAugust 28, 2019

最近开始学习Qt,结合之前学习过的caffe一起搭建了一个人脸识别登录系统的程序,新手可能有理解不到位的情况,还请大家多多指教。

我的想法是用opencv自带的人脸检测算法检测出面部,利用caffe训练好的卷积神经网络来提取特征,通过计算当前检测到的人脸与已近注册的所有用户的面部特征之间的相似度,如果最大的相似度大于一个阈值,就可以确定当前检测到的人脸对应为这个相似度最大的用户了。

###Caffe人脸识别

因为不断有新的用户加入,然而添加新用户后重新调整CNN的网络结构太费时间,所以不能用CNN去判别一个用户属于哪一类。一个训练好的人脸识别网络拥有很强大的特征提取能力(例如这里用到的VGG face),我们finetune预训练的网络时会调整最后一层的分类数目,所以最后一层的目的是为了分类,倒数第二个全连接层(或者前面的)提取到的特征通过简单的计算距离也可以达到很高的准确率,因此可以用计算相似度的方式判断类别。

载入finetune后的VGG模型

代码就不详细解释了,我用的是拿1000个人脸微调后的VGGface,效果比用直接下载来的weight文件好一点,这里可以用原始的权重文件代替。

import caffe
model_def = 'VGG_FACE_deploy.prototxt'
model_weights = 'VGG_Face_finetune_1000_iter_900.caffemodel'
# create transformer for the input called 'data'
net = caffe.Net(model_def,   # defines the structure of the model
        model_weights, # contains the trained weights
        caffe.TEST) 
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2,0,1)) # move image channels to outermost dimension
transformer.set_mean('data', np.array([104, 117, 123]))      # subtract the dataset-mean value in each channel
transformer.set_raw_scale('data', 255)   # rescale from [0, 1] to [0, 255]
transformer.set_channel_swap('data', (2,1,0)) # swap channels from RGB to BGRxpor

计算余弦相似度

import numpy as np

# 计算余弦距离
def cal_cos(A,B):
  num = A.dot(B.T) #若为行向量则 A * B.T
  print(B.shape)
  if B.ndim == 1:
    denom = np.linalg.norm(A) * np.linalg.norm(B)
  else:
    denom = np.linalg.norm(A) * np.linalg.norm(B, axis=1)
  #print(num)
  cos = num / denom #余弦值
  sim = 0.5 + 0.5 * cos #归一化
  return sim

def cal_feature(image):
  #for i,img_name in enumerate(os.listdir(path)):
    #image = caffe.io.load_image(os.path.join(path,img_name))
  transformed_image = transformer.preprocess('data', image)
  net.blobs['data'].data[0,:,:,:] = transformed_image
  output = net.forward()
  return net.blobs['fc7'].data[0]

cal_feature函数返回fc7层的输出,也就是image通过网络提取到的特征;A的维度为[1, 4096],为需要检测的目标,B的维度为[n,4096],表示所有已注册的用户的特征,cal_cos返回n个相似度,值越大,越可能是同一个人。

###Opencv人脸检测

检测人脸位置的算法用了opencv自带的人脸检测器。

import cv2

face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

PyQt界面

定义全局变量存储用户的信息,提取到的特征,我用文件的形式将这些信息保存到本地,下一次运行时提前载入。

import sys
import os
import pickle
global ALLFEATURE, NEWFEATURE, tempUsrName, ALLUSER, USRNAME

with open('USRNAME.pickle', 'rb') as f:
  USRNAME = pickle.load(f)
with open('ALLUSER.pickle', 'rb') as f:
  ALLUSER = pickle.load(f)

ALLFEATURE = np.load('usrfeature.npy')
NEWFEATURE = np.array([])
tempUsrName = {}

设计一个登录界面

用PyQt设计一个界面,实现用户注册,注册时录入照片,用户密码登录,人脸识别登录等功能。

创建一个TabWidget界面

tab1用来实现密码登录,注册,tab2用来实现人脸识别登录。

from PyQt5.QtWidgets import (QWidget, QMessageBox, QLabel, QDialog,
  QApplication, QPushButton, QDesktopWidget, QLineEdit, QTabWidget)
from PyQt5.QtGui import QIcon, QPixmap, QImage, QPalette, QBrush
from PyQt5.QtCore import Qt, QTimer

class TabWidget(QTabWidget):

  def __init__(self, parent=None):
    super(TabWidget, self).__init__(parent)
    self.setWindowTitle('Face Recognition')
    self.setWindowIcon(QIcon('camera.png'))
    self.resize(400, 260)
    self.center()
    self.mContent = passWordSign()
    self.mIndex = faceSign()
    self.addTab(self.mContent, QIcon('camera.png'), u"密码登录")
    self.addTab(self.mIndex, u"人脸识别")
    palette=QPalette()
    icon=QPixmap('background.jpg').scaled(400, 260)
    palette.setBrush(self.backgroundRole(), QBrush(icon)) #添加背景图片
    self.setPalette(palette)

  def center(self):
     
    qr = self.frameGeometry()
    cp = QDesktopWidget().availableGeometry().center()
    qr.moveCenter(cp)
    self.move(qr.topLeft())

  def closeEvent(self, event):
     
    reply = QMessageBox.question(self, 'Message',
      "Are you sure to quit?", QMessageBox.Yes |
      QMessageBox.No, QMessageBox.No)
 
    if reply == QMessageBox.Yes:
      event.accept()
    else:
      event.ignore() 


if __name__ == '__main__':
   
  app = QApplication(sys.argv)
  t = TabWidget()
  t.show()
  #ex = Example()
sys.exit(app.exec_())

用户注册和密码登录

分别添加两个按钮和两个文本框,文本框用于用户名和密码输入,按钮分别对应事件注册和登录。addPicture用于注册时录入用户照片。

class passWordSign(QWidget):
   
  def __init__(self):
    super().__init__()
     
    self.initUI()
         
  def initUI(self):       
     
    #self.setGeometry(0, 0, 450, 300)    
    self.signUpButton = QPushButton(QIcon('camera.png'), 'Sign up', self)
    self.signUpButton.move(300, 200)
    self.signInButton = QPushButton(QIcon('camera.png'), 'Sign in', self)
    self.signInButton.move(200, 200)
    self.usrNameLine = QLineEdit( self )
    self.usrNameLine.setPlaceholderText('User Name')
    self.usrNameLine.setFixedSize(200, 30)
    self.usrNameLine.move(100, 50)
    self.passWordLine = QLineEdit(self)
    self.passWordLine.setEchoMode(QLineEdit.Password) 
    self.passWordLine.setPlaceholderText('Pass Word')
    self.passWordLine.setFixedSize(200, 30)
    self.passWordLine.move(100, 120)
    self.signInButton.clicked.connect(self.signIn)
    self.signUpButton.clicked.connect(self.signUp)
    self.show()

  def signIn(self):
    global ALLFEATURE, NEWFEATURE, tempUsrName, ALLUSER, USRNAME
    if self.usrNameLine.text() not in ALLUSER:
      QMessageBox.information(self,"Information","用户不存在,请注册")
    elif ALLUSER[self.usrNameLine.text()] == self.passWordLine.text():
      QMessageBox.information(self,"Information","Welcome!")

    else:
      QMessageBox.information(self,"Information","密码错误!")

  def signUp(self):
    global ALLFEATURE, NEWFEATURE, tempUsrName, ALLUSER, USRNAME
    if self.usrNameLine.text() in ALLUSER:
      QMessageBox.information(self,"Information","用户已存在!")
    elif len(self.passWordLine.text()) < 3:
      QMessageBox.information(self,"Information","密码太短!")
    else:
      tempUsrName.clear()
      tempUsrName[self.usrNameLine.text()] = self.passWordLine.text()
      self.addPicture()
      

  def addPicture(self):
    dialog = Dialog(parent=self)
    dialog.show()

录入用户人脸

点击sign up按钮后弹出一个对话框,用一个label控件显示摄像头获取的照片。首先用opencv打开摄像头,用自带的人脸检测器检测到人脸self.face后,绘制一个蓝色的框,然后resize到固定的大小(对应网络的输入)。将opencv的图片格式转换为Qlabel可以显示的格式,用Qtimer定时器每隔一段时间刷新图片。检测鼠标点击事件mousePressEvent,点击鼠标后保存当前录入的用户注册信息和对应的特征。关闭摄像头,提示注册成功。

class Dialog(QDialog):
  def __init__(self, parent=None):
    QDialog.__init__(self, parent)
    self.resize(240, 200)
    self.label = QLabel(self) 
    self.label.setFixedWidth(150) 
    self.label.setFixedHeight(150) 
    self.label.move(40, 20)
    pixMap = QPixmap("face.jpg").scaled(self.label.width(),self.label.height()) 
    self.label.setPixmap(pixMap)
    self.label.show()
    self.timer = QTimer()
    self.timer.start()
    self.timer.setInterval(100)
    self.cap = cv2.VideoCapture(0)
    self.timer.timeout.connect(self.capPicture)

  def mousePressEvent(self, event):
    global ALLFEATURE, NEWFEATURE, tempUsrName, ALLUSER, USRNAME 
    self.cap.release()
    NEWFEATURE = cal_feature(self.face).reshape([1,-1])
    if NEWFEATURE.size > 0:
      for key, value in tempUsrName.items():
        ALLUSER[key] = value
        USRNAME.append(key)
        with open('ALLUSER.pickle', 'wb') as f:
          pickle.dump(ALLUSER, f)
        with open('USRNAME.pickle', 'wb') as f:
          pickle.dump(USRNAME, f)
        print(ALLFEATURE,NEWFEATURE)
        ALLFEATURE = np.concatenate((ALLFEATURE, NEWFEATURE), axis=0)
        np.save('usrfeature.npy', ALLFEATURE)
        QMessageBox.information(self,"Information","Success!")


  def capPicture(self):
    
    if (self.cap.isOpened()):
      # get a frame
      ret, img = self.cap.read()
      gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
      faces = face_cascade.detectMultiScale(gray, 1.3, 5)
      for (x,y,w,h) in faces:
        img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
        roi_gray = gray[y:y+h, x:x+w]
        roi_color = img[y:y+h, x:x+w]
        self.face = cv2.resize(img[y:y+h, x:x+w],(224, 224), interpolation=cv2.INTER_CUBIC)
      height, width, bytesPerComponent = img.shape
      bytesPerLine = bytesPerComponent * width
      # 变换彩色空间顺序
      cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)
      # 转为QImage对象
      self.image = QImage(img.data, width, height, bytesPerLine, QImage.Format_RGB888)
      self.label.setPixmap(QPixmap.fromImage(self.image).scaled(self.label.width(),self.label.height()))

人脸识别登录

登录部分与之前类似,添加一个label控件用来显示图片,两个按钮用来开始检测和选定图片。当最大的相似度大于0.9时,显示登录成功。

class faceSign(QWidget):
   
  def __init__(self):
    super().__init__()
     
    self.initUI()
       
  def initUI(self):
    self.label = QLabel(self) 
    self.label.setFixedWidth(260) 
    self.label.setFixedHeight(200) 
    self.label.move(20, 15)
    self.pixMap = QPixmap("face.jpg").scaled(self.label.width(),self.label.height()) 
    self.label.setPixmap(self.pixMap)
    self.label.show()
    self.startButton = QPushButton('start', self)
    self.startButton.move(300, 50)
    self.capPictureButton = QPushButton('capPicture', self)
    self.capPictureButton.move(300, 150)
    self.startButton.clicked.connect(self.start)
    self.capPictureButton.clicked.connect(self.cap)
    #self.cap = cv2.VideoCapture(0)
    #self.ret, self.img = self.cap.read()
    self.timer = QTimer()
    self.timer.start()
    self.timer.setInterval(100)
    
    

  def start(self,event):
    self.cap = cv2.VideoCapture(0)
    self.timer.timeout.connect(self.capPicture)

  def cap(self,event):
    global ALLFEATURE, NEWFEATURE, tempUsrName, ALLUSER, USRNAME
    self.cap.release()
    feature = cal_feature(self.face)
    #np.save('usrfeature.npy', ALLFEATURE)
    sim = cal_cos(feature,np.array(ALLFEATURE))
    m = np.argmax(sim)
    if max(sim)>0.9:
      print(sim, USRNAME)
      QMessageBox.information(self,"Information","Welcome," + USRNAME[m])
    else:
      QMessageBox.information(self,"Information","识别失败!")
    self.label.setPixmap(self.pixMap)
   
  def capPicture(self):
    
    if (self.cap.isOpened()):
      # get a frame
      ret, img = self.cap.read()
      gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
      faces = face_cascade.detectMultiScale(gray, 1.3, 5)
      for (x,y,w,h) in faces:
        img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
        roi_gray = gray[y:y+h, x:x+w]
        roi_color = img[y:y+h, x:x+w]
        self.face = cv2.resize(img[y:y+h, x:x+w],(224, 224), interpolation=cv2.INTER_CUBIC)
      height, width, bytesPerComponent = img.shape
      bytesPerLine = bytesPerComponent * width
      # 变换彩色空间顺序
      cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)
      # 转为QImage对象
      self.image = QImage(img.data, width, height, bytesPerLine, QImage.Format_RGB888)
      self.label.setPixmap(QPixmap.fromImage(self.image).scaled(self.label.width(),self.label.height()))

###效果

密码登录,输入合法的密码后点击sign in,显示欢迎。

PyQt5+Caffe+Opencv搭建人脸识别登录界面

注册界面

PyQt5+Caffe+Opencv搭建人脸识别登录界面

识别界面

PyQt5+Caffe+Opencv搭建人脸识别登录界面

登录成功

点击capPicture按钮后,开始计算相似度,大于0.9提示登录成功,并显示用户名。

PyQt5+Caffe+Opencv搭建人脸识别登录界面

###缺点和不足

程序用pyinstaller打包后,亲测可以在别的linux电脑下运行。代码和文件可以参考我的Github(没有VGG face的权重),第一次写博客,非常感谢大家的意见。总结一下不足:

1.初始话caffe模型很费时间,所以程序打开时要等一两秒;
2.用户信息用文件的形式保存并不安全,可以用mysql保存到数据库,需要时调出;
3.人脸位置检测可以用faster rcnn代替,再加上对齐;
4.识别很耗费时间,因此不能实时检测,应该可以用多线程解决。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python的id()函数解密过程
Dec 25 Python
python实现计算资源图标crc值的方法
Oct 05 Python
在Python程序中实现分布式进程的教程
Apr 28 Python
python使用KNN算法手写体识别
Feb 01 Python
Python网络编程之TCP与UDP协议套接字用法示例
Feb 02 Python
pandas.loc 选取指定列进行操作的实例
May 18 Python
python实现字符串中字符分类及个数统计
Sep 28 Python
详解关于Django中ORM数据库迁移的配置
Oct 08 Python
Python代码太长换行的实现
Jul 05 Python
python3模拟实现xshell远程执行liunx命令的方法
Jul 12 Python
解决Python安装时报缺少DLL问题【两种解决方法】
Jul 15 Python
pytorch查看torch.Tensor和model是否在CUDA上的实例
Jan 03 Python
关于Python核心框架tornado的异步协程的2种方法详解
Aug 28 #Python
python使用celery实现异步任务执行的例子
Aug 28 #Python
Python Gitlab Api 使用方法
Aug 28 #Python
face++与python实现人脸识别签到(考勤)功能
Aug 28 #Python
OpenCV+face++实现实时人脸识别解锁功能
Aug 28 #Python
Python的垃圾回收机制详解
Aug 28 #Python
Python通过cv2读取多个USB摄像头
Aug 28 #Python
You might like
PHP PDO函数库详解
2010/04/27 PHP
php缓冲 output_buffering和ob_start使用介绍
2014/01/30 PHP
PHP环境搭建(php+Apache+mysql)
2016/11/14 PHP
PHP实现限制域名访问的实现代码(本地验证)
2020/09/13 PHP
多个iframe自动调整大小的问题
2006/09/18 Javascript
JS解密入门 最终变量劫持
2008/06/25 Javascript
JQuery FlexiGrid的asp.net完美解决方案 dotNetFlexGrid-.Net原生的异步表格控件
2010/09/12 Javascript
JavaScript人脸识别技术及脸部识别JavaScript类库Tracking.js
2015/09/14 Javascript
深入解析Backbone.js框架的依赖库Underscore.js的作用
2016/05/07 Javascript
基于Bootstrap实现tab标签切换效果
2020/04/15 Javascript
浅谈jQuery中hide和fadeOut的区别 show和fadeIn的区别
2016/08/18 Javascript
Angular 1.x个人使用的经验小结
2017/07/19 Javascript
最全正则表达式总结:验证QQ号、手机号、Email、中文、邮编、身份证、IP地址等
2017/08/16 Javascript
jQuery ajax读取本地json文件的实例
2017/10/31 jQuery
js Element Traversal规范中的元素遍历方法
2018/04/19 Javascript
浅谈layui框架自带分页和表格重载的接口解析问题
2019/09/11 Javascript
Vue 路由间跳转和新开窗口的方式(query、params)
2019/12/25 Javascript
python3+PyQt5自定义视图详解
2018/04/24 Python
网易2016研发工程师编程题 奖学金(python)
2019/06/19 Python
浅谈pytorch、cuda、python的版本对齐问题
2020/01/15 Python
python安装和pycharm环境搭建设置方法
2020/05/27 Python
Python中的wordcloud库安装问题及解决方法
2020/05/27 Python
flask项目集成swagger的方法
2020/12/09 Python
HTML5开发动态音频图的实现
2020/07/02 HTML / CSS
Vichy薇姿加拿大官网:法国药妆,全球专业敏感肌护肤领先品牌
2018/07/11 全球购物
Lacoste(法国鳄鱼)加拿大官网:以标志性的POLO衫而闻名
2019/05/15 全球购物
潘多拉珠宝美国官方网站:Pandora US
2020/06/18 全球购物
荷叶圆圆教学反思
2014/02/01 职场文书
学生社团文化节开幕式主持词
2014/03/28 职场文书
1亿有多大教学反思
2014/05/01 职场文书
领导班子在批评与自我批评座谈会上的发言
2014/09/28 职场文书
副检察长四风问题对照检查材料思想汇报
2014/10/07 职场文书
2015年少先队活动总结
2015/03/25 职场文书
迁徙的鸟观后感
2015/06/09 职场文书
Nginx缓存设置案例详解
2021/09/15 Servers
python绘制简单直方图(质量分布图)的方法
2022/04/21 Python