PyTorch的深度学习入门教程之构建神经网络


Posted in Python onJune 27, 2019

前言

本文参考PyTorch官网的教程,分为五个基本模块来介绍PyTorch。为了避免文章过长,这五个模块分别在五篇博文中介绍。

Part3:使用PyTorch构建一个神经网络

神经网络可以使用touch.nn来构建。nn依赖于autograd来定义模型,并且对其求导。一个nn.Module包含网络的层(layers),同时forward(input)可以返回output。

这是一个简单的前馈网络。它接受输入,然后一层一层向前传播,最后输出一个结果。

训练神经网络的典型步骤如下:

(1)  定义神经网络,该网络包含一些可以学习的参数(如权重)

(2)  在输入数据集上进行迭代

(3)  使用网络对输入数据进行处理

(4)  计算loss(输出值距离正确值有多远)

(5)  将梯度反向传播到网络参数中

(6)  更新网络的权重,使用简单的更新法则:weight = weight - learning_rate* gradient,即:新的权重=旧的权重-学习率*梯度值。

1 定义网络

我们先定义一个网络:

import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F


class Net(nn.Module):

  def __init__(self):
    super(Net, self).__init__()
    # 1 input image channel, 6 output channels, 5x5 square convolution
    # kernel
    self.conv1 = nn.Conv2d(1, 6, 5)
    self.conv2 = nn.Conv2d(6, 16, 5)
    # an affine operation: y = Wx + b
    self.fc1 = nn.Linear(16 * 5 * 5, 120)
    self.fc2 = nn.Linear(120, 84)
    self.fc3 = nn.Linear(84, 10)

  def forward(self, x):
    # Max pooling over a (2, 2) window
    x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
    # If the size is a square you can only specify a single number
    x = F.max_pool2d(F.relu(self.conv2(x)), 2)
    x = x.view(-1, self.num_flat_features(x))
    x = F.relu(self.fc1(x))
    x = F.relu(self.fc2(x))
    x = self.fc3(x)
    return x

  def num_flat_features(self, x):
    size = x.size()[1:] # all dimensions except the batch dimension
    num_features = 1
    for s in size:
      num_features *= s
    return num_features


net = Net()
print(net)

预期输出:

Net (

 (conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))

 (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))

 (fc1): Linear (400 ->120)

 (fc2): Linear (120 ->84)

 (fc3): Linear (84 ->10)

)

你只需要定义forward函数,那么backward函数(梯度在此函数中计算)就会利用autograd来自动定义。你可以在forward函数中使用Tensor的任何运算。

学习到的参数可以被net.parameters()返回。

params = list(net.parameters())
print(len(params))
print(params[0].size()) # conv1's .weight

预期输出:

10

torch.Size([6, 1, 5, 5])

前向计算的输入和输出都是autograd.Variable,注意,这个网络(LeNet)的输入尺寸是32*32。为了在MNIST数据集上使用这个网络,请把图像大小转变为32*32。

input = Variable(torch.randn(1, 1, 32, 32))
out = net(input)
print(out)

预期输出:

Variable containing:
-0.0796 0.0330 0.0103 0.0250 0.1153 -0.0136 0.0234 0.0881 0.0374 -0.0359
[torch.FloatTensor of size 1x10]

将梯度缓冲区归零,然后使用随机梯度值进行反向传播。

net.zero_grad()
out.backward(torch.randn(1, 10))

注意:torch.nn只支持mini-batches. 完整的torch.nn package只支持mini-batch形式的样本作为输入,并且不能只包含一个样本。例如,nn.Conv2d会采用一个4D的Tensor(nSamples* nChannels * Height * Width)。如果你有一个单样本,可以使用input.unsqueeze(0)来添加一个虚假的批量维度。

在继续之前,让我们回顾一下迄今为止所见过的所有类。

概述:

(1)  torch.Tensor——多维数组

(2)  autograd.Variable——包装了一个Tensor,并且记录了应用于其上的运算。与Tensor具有相同的API,同时增加了一些新东西例如backward()。并且有相对于该tensor的梯度值。

(3)  nn.Module——神经网络模块。封装参数的简便方式,对于参数向GPU移动,以及导出、加载等有帮助。

(4)  nn.Parameter——这是一种变量(Variable),当作为一个属性(attribute)分配到一个模块(Module)时,可以自动注册为一个参数(parameter)。

(5)  autograd.Function——执行自动求导运算的前向和反向定义。每一个Variable运算,创建至少一个单独的Function节点,该节点连接到创建了Variable并且编码了它的历史的函数身上。

2 损失函数(Loss Function)

损失函数采用输出值和目标值作为输入参数,来计算输出值距离目标值还有多大差距。在nn package中有很多种不同的损失函数,最简单的一个loss就是nn.MSELoss,它计算输出值和目标值之间的均方差。

例如:

output = net(input)
target = Variable(torch.arange(1, 11)) # a dummy target, for example
criterion = nn.MSELoss()

loss = criterion(output, target)
print(loss)

现在,从反向看loss,使用.grad_fn属性,你会看到一个计算graph如下:

input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d
   -> view -> linear -> relu -> linear -> relu -> linear
   -> MSELoss
   -> loss

当我们调用loss.backward(),整个的graph关于loss求导,graph中的所有Variables都会有他们自己的.grad变量。

为了理解,我们进行几个反向步骤。

print(loss.grad_fn) # MSELoss
print(loss.grad_fn.next_functions[0][0]) # Linear
print(loss.grad_fn.next_functions[0][0].next_functions[0][0]) # ReLU

预期输出:

<torch.autograd.function.MSELossBackwardobjectat0x7fb3c0dcf4f8>

<torch.autograd.function.AddmmBackwardobjectat0x7fb3c0dcf408>

<AccumulateGradobjectat0x7fb3c0db79e8>

3 反向传播(Backprop)

可以使用loss.backward()进行误差反向传播。你需要清除已经存在的梯度值,否则梯度将会积累到现有的梯度上。

现在,我们调用loss.backward(),看一看conv1的bias 梯度在backward之前和之后的值。

net.zero_grad()   # zeroes the gradient buffers of all parameters

print('conv1.bias.grad before backward')
print(net.conv1.bias.grad)

loss.backward()

print('conv1.bias.grad after backward')
print(net.conv1.bias.grad)

4 更新权重

实践当中最简单的更新法则就是随机梯度下降法( StochasticGradient Descent (SGD))

weight = weight - learning_rate * gradient

执行这个操作的python代码如下:

learning_rate = 0.01
for f in net.parameters():
  f.data.sub_(f.grad.data * learning_rate)

但是当你使用神经网络的时候,你可能会想要尝试多种不同的更新法则,例如SGD,Nesterov-SGD, Adam, RMSProp等。为了实现此功能,有一个package叫做torch.optim已经实现了这些。使用它也很方便:

import torch.optim as optim

# create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)

# in your training loop:
optimizer.zero_grad()  # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()  # Does the update

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python实现的双色球生成功能示例
Dec 18 Python
Python编写Windows Service服务程序
Jan 04 Python
取numpy数组的某几行某几列方法
Apr 03 Python
如何更优雅地写python代码
Jul 02 Python
python实现各种插值法(数值分析)
Jul 30 Python
python selenium 执行完毕关闭chromedriver进程示例
Nov 15 Python
Ubuntu下Python+Flask分分钟搭建自己的服务器教程
Nov 19 Python
Jupyter加载文件的实现方法
Apr 14 Python
python中关于数据类型的学习笔记
Jul 19 Python
python 实现逻辑回归
Dec 30 Python
Python3+Django get/post请求实现教程详解
Feb 16 Python
对Keras自带Loss Function的深入研究
May 25 Python
PyTorch的深度学习入门之PyTorch安装和配置
Jun 27 #Python
解决pycharm remote deployment 配置的问题
Jun 27 #Python
python turtle库画一个方格和圆实例
Jun 27 #Python
Python实现的对一个数进行因式分解操作示例
Jun 27 #Python
python pytest进阶之xunit fixture详解
Jun 27 #Python
Python批量查询关键词微信指数实例方法
Jun 27 #Python
Django框架orM与自定义SQL语句混合事务控制操作
Jun 27 #Python
You might like
PHP 网页过期时间的控制代码
2009/06/29 PHP
用穿越火线快速入门php面向对象
2012/02/22 PHP
php生成圆角图片的方法
2015/04/07 PHP
DOM基础教程之使用DOM控制表格
2015/01/20 Javascript
Vuejs 用$emit与$on来进行兄弟组件之间的数据传输通信
2017/02/23 Javascript
Js自动截取字符串长度,添加省略号(……)的实现方法
2017/03/06 Javascript
node通过npm写一个cli命令行工具
2017/10/12 Javascript
vue项目中跳转到外部链接的实例讲解
2018/09/20 Javascript
js实现按钮开关单机下拉菜单效果
2018/11/22 Javascript
vue-cli构建vue项目的步骤详解
2019/01/27 Javascript
小程序实现订单倒计时功能
2019/04/23 Javascript
JS实现进度条动态加载特效
2020/03/25 Javascript
Node.js API详解之 Error模块用法实例分析
2020/05/14 Javascript
vue 解决setTimeOut和setInterval函数无效报错的问题
2020/07/30 Javascript
TypeScript魔法堂之枚举的超实用手册
2020/10/29 Javascript
Python时间序列处理之ARIMA模型的使用讲解
2019/04/02 Python
python抓取需要扫微信登陆页面
2019/04/29 Python
pytz格式化北京时间多出6分钟问题的解决方法
2019/06/21 Python
Python Django Vue 项目创建过程详解
2019/07/29 Python
django 连接数据库 sqlite的例子
2019/08/14 Python
Python socket模块方法实现详解
2019/11/05 Python
css3 旋转按钮 使用CSS3创建一个旋转可变色按钮
2012/12/31 HTML / CSS
非常震撼的纯CSS3人物行走动画
2016/02/24 HTML / CSS
html5的canvas方法使用指南
2014/12/15 HTML / CSS
美国第一香水网站:Perfume.com
2017/01/23 全球购物
将一个文本文件的内容按倒序打印出来
2015/01/05 面试题
Linux如何命名文件--使用文件名时应注意
2012/01/22 面试题
药学专业毕业生求职信
2013/10/20 职场文书
求职简历中个人的自我评价
2013/12/25 职场文书
人力资源管理专业自荐书范文
2014/02/10 职场文书
电子信息工程专业推荐信
2014/02/14 职场文书
护士岗位职责
2014/02/16 职场文书
2014学雷锋活动心得体会
2014/03/10 职场文书
雏鹰争章活动总结
2014/05/09 职场文书
家庭贫困证明范本(经典版)
2014/09/22 职场文书
漫画《尖帽子的魔法工坊》宣布动画化
2022/04/06 日漫