PyTorch线性回归和逻辑回归实战示例


Posted in Python onMay 22, 2018

线性回归实战

使用PyTorch定义线性回归模型一般分以下几步:

1.设计网络架构
2.构建损失函数(loss)和优化器(optimizer)
3.训练(包括前馈(forward)、反向传播(backward)、更新模型参数(update))

#author:yuquanle
#data:2018.2.5
#Study of LinearRegression use PyTorch

import torch
from torch.autograd import Variable

# train data
x_data = Variable(torch.Tensor([[1.0], [2.0], [3.0]]))
y_data = Variable(torch.Tensor([[2.0], [4.0], [6.0]]))

class Model(torch.nn.Module):
  def __init__(self):
    super(Model, self).__init__()
    self.linear = torch.nn.Linear(1, 1) # One in and one out

  def forward(self, x):
    y_pred = self.linear(x)
    return y_pred

# our model
model = Model()

criterion = torch.nn.MSELoss(size_average=False) # Defined loss function
optimizer = torch.optim.SGD(model.parameters(), lr=0.01) # Defined optimizer

# Training: forward, loss, backward, step
# Training loop
for epoch in range(50):
  # Forward pass
  y_pred = model(x_data)

  # Compute loss
  loss = criterion(y_pred, y_data)
  print(epoch, loss.data[0])

  # Zero gradients
  optimizer.zero_grad()
  # perform backward pass
  loss.backward()
  # update weights
  optimizer.step()

# After training
hour_var = Variable(torch.Tensor([[4.0]]))
print("predict (after training)", 4, model.forward(hour_var).data[0][0])

迭代十次打印结果:

0 123.87958526611328
1 55.19491195678711
2 24.61777114868164
3 11.005026817321777
4 4.944361686706543
5 2.2456750869750977
6 1.0436556339263916
7 0.5079189538955688
8 0.2688019871711731
9 0.16174012422561646
predict (after training) 4 7.487752914428711

loss还在继续下降,此时输入4得到的结果还不是预测的很准

当迭代次数设置为50时:

0 35.38422393798828
5 0.6207122802734375
10 0.012768605723977089
15 0.0020055510103702545
20 0.0016929294215515256
25 0.0015717096393927932
30 0.0014619173016399145
35 0.0013598509831354022
40 0.0012649153359234333
45 0.00117658288218081
50 0.001094428705982864
predict (after training) 4 8.038028717041016

此时,函数已经拟合比较好了

再运行一次:

0 159.48605346679688
5 2.827991485595703
10 0.08624256402254105
15 0.03573693335056305
20 0.032463930547237396
25 0.030183646827936172
30 0.02807590737938881
35 0.026115568354725838
40 0.02429218217730522
45 0.022596003487706184
50 0.0210183784365654
predict (after training) 4 7.833342552185059

发现同为迭代50次,但是当输入为4时,结果不同,感觉应该是使用pytorch定义线性回归模型时:
torch.nn.Linear(1, 1),只需要知道输入和输出维度,里面的参数矩阵是随机初始化的(具体是不是随机的还是按照一定约束条件初始化的我不确定),所有每次计算loss会下降到不同的位置(模型的参数更新从而也不同),导致结果不一样。

逻辑回归实战

线性回归是解决回归问题的,逻辑回归和线性回归很像,但是它是解决分类问题的(一般二分类问题:0 or 1)。也可以多分类问题(用softmax可以实现)。

使用pytorch实现逻辑回归的基本过程和线性回归差不多,但是有以下几个区别:

PyTorch线性回归和逻辑回归实战示例

下面为sigmoid函数:

PyTorch线性回归和逻辑回归实战示例 

在逻辑回归中,我们预测如果 当输出大于0.5时,y=1;否则y=0。

损失函数一般采用交叉熵loss:

PyTorch线性回归和逻辑回归实战示例

# date:2018.2.6
# LogisticRegression

import torch
from torch.autograd import Variable

x_data = Variable(torch.Tensor([[0.6], [1.0], [3.5], [4.0]]))
y_data = Variable(torch.Tensor([[0.], [0.], [1.], [1.]]))

class Model(torch.nn.Module):
  def __init__(self):
    super(Model, self).__init__()
    self.linear = torch.nn.Linear(1, 1) # One in one out
    self.sigmoid = torch.nn.Sigmoid()

  def forward(self, x):
    y_pred = self.sigmoid(self.linear(x))
    return y_pred

# Our model
model = Model()

# Construct loss function and optimizer
criterion = torch.nn.BCELoss(size_average=True)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

# Training loop
for epoch in range(500):
  # Forward pass
  y_pred = model(x_data)

  # Compute loss
  loss = criterion(y_pred, y_data)
  if epoch % 20 == 0:
    print(epoch, loss.data[0])

  # Zero gradients
  optimizer.zero_grad()
  # Backward pass
  loss.backward()
  # update weights
  optimizer.step()

# After training
hour_var = Variable(torch.Tensor([[0.5]]))
print("predict (after training)", 0.5, model.forward(hour_var).data[0][0])
hour_var = Variable(torch.Tensor([[7.0]]))
print("predict (after training)", 7.0, model.forward(hour_var).data[0][0])

输入结果:

0 0.9983477592468262
20 0.850886881351471
40 0.7772406339645386
60 0.7362991571426392
80 0.7096697092056274
100 0.6896909475326538
120 0.6730546355247498
140 0.658246636390686
160 0.644534170627594
180 0.6315458416938782
200 0.6190851330757141
220 0.607043981552124
240 0.5953611731529236
260 0.5840001106262207
280 0.5729377269744873
300 0.5621585845947266
320 0.5516515970230103
340 0.5414079427719116
360 0.5314203500747681
380 0.5216821432113647
400 0.512187123298645
420 0.5029295086860657
440 0.49390339851379395
460 0.4851033389568329
480 0.47652381658554077
predict (after training) 0.5 0.49599987268447876
predict (after training) 7.0 0.9687209129333496

Process finished with exit code 0

训练完模型之后,输入新的数据0.5,此时输出小于0.5,则为0类别,输入7输出大于0.5,则为1类别。使用softmax做多分类时,那个维度的数值大,则为那个数值所对应位置的类别。

更深更宽的网络

前面的例子都是浅层输入为一维的网络,如果需要更深更宽的网络,使用pytorch也可以很好的实现,以逻辑回归为例:
当输入x的维度很大时,需要更宽的网络:

PyTorch线性回归和逻辑回归实战示例

更深的网络:

PyTorch线性回归和逻辑回归实战示例

采用下面数据集(下载地址:https://github.com/hunkim/PyTorchZeroToAll/tree/master/data)

PyTorch线性回归和逻辑回归实战示例 

输入维度为八。

#author:yuquanle
#date:2018.2.7
#Deep and Wide


import torch
from torch.autograd import Variable
import numpy as np

xy = np.loadtxt('./data/diabetes.csv', delimiter=',', dtype=np.float32)
x_data = Variable(torch.from_numpy(xy[:, 0:-1]))
y_data = Variable(torch.from_numpy(xy[:, [-1]]))

#print(x_data.data.shape)
#print(y_data.data.shape)

class Model(torch.nn.Module):
  def __init__(self):
    super(Model, self).__init__()
    self.l1 = torch.nn.Linear(8, 6)
    self.l2 = torch.nn.Linear(6, 4)
    self.l3 = torch.nn.Linear(4, 1)
    self.sigmoid = torch.nn.Sigmoid()

  def forward(self, x):
    x = self.sigmoid(self.l1(x))
    x = self.sigmoid(self.l2(x))
    y_pred = self.sigmoid(self.l3(x))
    return y_pred

# our model
model = Model()

cirterion = torch.nn.BCELoss(size_average=True)
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)

hour_var = Variable(torch.Tensor([[-0.294118,0.487437,0.180328,-0.292929,0,0.00149028,-0.53117,-0.0333333]]))
print("(Before training)", model.forward(hour_var).data[0][0])

# Training loop
for epoch in range(1000):
  y_pred = model(x_data)
  # y_pred,y_data不能写反(因为损失函数为交叉熵loss)
  loss = cirterion(y_pred, y_data)
  optimizer.zero_grad()
  loss.backward()
  optimizer.step()
  if epoch % 50 == 0:
    print(epoch, loss.data[0])


# After training
hour_var = Variable(torch.Tensor([[-0.294118,0.487437,0.180328,-0.292929,0,0.00149028,-0.53117,-0.0333333]]))
print("predict (after training)", model.forward(hour_var).data[0][0])

结果:

(Before training) 0.5091859698295593
0 0.6876295208930969
50 0.6857835650444031
100 0.6840178370475769
150 0.6823290586471558
200 0.6807141900062561
250 0.6791688203811646
300 0.6776910424232483
350 0.6762782335281372
400 0.6749269366264343
450 0.6736343502998352
500 0.6723981499671936
550 0.6712161302566528
600 0.6700847744941711
650 0.6690039038658142
700 0.667969822883606
750 0.666980504989624
800 0.6660353541374207
850 0.6651310324668884
900 0.664265513420105
950 0.6634389758110046
predict (after training) 0.5618339776992798
Process finished with exit code 0

参考:

1.https://github.com/hunkim/PyTorchZeroToAll

2.http://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python中关于字符串对象的一些基础知识
Apr 08 Python
Windows下实现Python2和Python3两个版共存的方法
Jun 12 Python
python开发中range()函数用法实例分析
Nov 12 Python
在Mac OS上搭建Python的开发环境
Dec 24 Python
Python requests发送post请求的一些疑点
May 20 Python
python 使用poster模块进行http方式的文件传输到服务器的方法
Jan 15 Python
Python logging设置和logger解析
Aug 28 Python
python线程中的同步问题及解决方法
Aug 29 Python
Python 异常的捕获、异常的传递与主动抛出异常操作示例
Sep 23 Python
利用PyCharm操作Github(仓库新建、更新,代码回滚)
Dec 18 Python
使用Python绘制台风轨迹图的示例代码
Sep 21 Python
python实现登录与注册系统
Nov 30 Python
python自动查询12306余票并发送邮箱提醒脚本
May 21 #Python
python利用smtplib实现QQ邮箱发送邮件
May 20 #Python
用Python下载一个网页保存为本地的HTML文件实例
May 21 #Python
Python读取本地文件并解析网页元素的方法
May 21 #Python
详解Python中的四种队列
May 21 #Python
Python实现的当前时间多加一天、一小时、一分钟操作示例
May 21 #Python
Python自定义函数实现求两个数最大公约数、最小公倍数示例
May 21 #Python
You might like
新的一年,新的期待:DC在2020年的四部动画电影
2020/01/01 欧美动漫
cnblogs csdn 代码运行框实现代码
2009/11/02 Javascript
extjs关于treePanel+chekBox全部选中以及清空选中问题探讨
2013/04/02 Javascript
js处理json以及字符串的比较等常用操作
2013/09/08 Javascript
jquery对元素拖动排序示例
2014/01/16 Javascript
jQuery 中国省市两级联动选择附图
2014/05/14 Javascript
基于Jquery插件实现跨域异步上传文件功能
2016/04/26 Javascript
JS上传图片预览插件制作(兼容到IE6)
2016/08/07 Javascript
Angularjs结合Bootstrap制作的一个TODO List
2016/08/18 Javascript
jQuery post数据至ashx实例详解
2016/11/18 Javascript
JavaScript中的call和apply的用途以及区别
2017/01/11 Javascript
jQuery实现标签页效果实战(4)
2017/02/08 Javascript
Bootstrap响应式表格详解
2017/05/23 Javascript
原生javascript AJAX 三级联动的实现代码
2018/05/04 Javascript
node.js遍历目录的方法示例
2018/08/01 Javascript
vue移动端弹框组件的实例
2018/09/25 Javascript
JavaScript基础之静态方法和实例方法分析
2018/12/26 Javascript
js中arguments对象的深入理解
2019/05/14 Javascript
[01:30]2016国际邀请赛中国区预选赛神秘商店火爆开启
2016/06/26 DOTA
简单介绍Python2.x版本中的cmp()方法的使用
2015/05/20 Python
Django 如何获取前端发送的头文件详解(推荐)
2017/08/15 Python
python 实现求解字符串集的最长公共前缀方法
2018/07/20 Python
flask中过滤器的使用详解
2018/08/01 Python
python实现AES加密和解密
2019/03/27 Python
用Python去除图像的黑色或白色背景实例
2019/12/12 Python
django在保存图像的同时压缩图像示例代码详解
2020/02/11 Python
Python bisect模块原理及常见实例
2020/06/17 Python
通过代码简单了解django model序列化作用
2020/11/12 Python
基于Django集成CAS实现流程详解
2020/11/28 Python
python 实现socket服务端并发的四种方式
2020/12/14 Python
德国咖啡批发商:Coffeefair
2019/08/26 全球购物
小学数学课题方案
2014/06/15 职场文书
单位委托书怎么写
2014/08/02 职场文书
2014年幼儿园老师工作总结
2014/12/05 职场文书
小学生组织委员竞选稿
2015/11/21 职场文书
如何用Python搭建gRPC服务
2021/06/30 Python