TensorFlow实现AutoEncoder自编码器


Posted in Python onMarch 09, 2018

一、概述

AutoEncoder大致是一个将数据的高维特征进行压缩降维编码,再经过相反的解码过程的一种学习方法。学习过程中通过解码得到的最终结果与原数据进行比较,通过修正权重偏置参数降低损失函数,不断提高对原数据的复原能力。学习完成后,前半段的编码过程得到结果即可代表原数据的低维“特征值”。通过学习得到的自编码器模型可以实现将高维数据压缩至所期望的维度,原理与PCA相似。

TensorFlow实现AutoEncoder自编码器

二、模型实现

1. AutoEncoder

首先在MNIST数据集上,实现特征压缩和特征解压并可视化比较解压后的数据与原数据的对照。

先看代码:

import tensorflow as tf 
import numpy as np 
import matplotlib.pyplot as plt 
 
# 导入MNIST数据 
from tensorflow.examples.tutorials.mnist import input_data 
mnist = input_data.read_data_sets("MNIST_data/", one_hot=False) 
 
learning_rate = 0.01 
training_epochs = 10 
batch_size = 256 
display_step = 1 
examples_to_show = 10 
n_input = 784 
 
# tf Graph input (only pictures) 
X = tf.placeholder("float", [None, n_input]) 
 
# 用字典的方式存储各隐藏层的参数 
n_hidden_1 = 256 # 第一编码层神经元个数 
n_hidden_2 = 128 # 第二编码层神经元个数 
# 权重和偏置的变化在编码层和解码层顺序是相逆的 
# 权重参数矩阵维度是每层的 输入*输出,偏置参数维度取决于输出层的单元数 
weights = { 
 'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])), 
 'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])), 
 'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])), 
 'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input])), 
} 
biases = { 
 'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])), 
 'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])), 
 'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])), 
 'decoder_b2': tf.Variable(tf.random_normal([n_input])), 
} 
 
# 每一层结构都是 xW + b 
# 构建编码器 
def encoder(x): 
 layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']), 
         biases['encoder_b1'])) 
 layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']), 
         biases['encoder_b2'])) 
 return layer_2 
 
 
# 构建解码器 
def decoder(x): 
 layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']), 
         biases['decoder_b1'])) 
 layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']), 
         biases['decoder_b2'])) 
 return layer_2 
 
# 构建模型 
encoder_op = encoder(X) 
decoder_op = decoder(encoder_op) 
 
# 预测 
y_pred = decoder_op 
y_true = X 
 
# 定义代价函数和优化器 
cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2)) #最小二乘法 
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) 
 
with tf.Session() as sess: 
 # tf.initialize_all_variables() no long valid from 
 # 2017-03-02 if using tensorflow >= 0.12 
 if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1: 
  init = tf.initialize_all_variables() 
 else: 
  init = tf.global_variables_initializer() 
 sess.run(init) 
 # 首先计算总批数,保证每次循环训练集中的每个样本都参与训练,不同于批量训练 
 total_batch = int(mnist.train.num_examples/batch_size) #总批数 
 for epoch in range(training_epochs): 
  for i in range(total_batch): 
   batch_xs, batch_ys = mnist.train.next_batch(batch_size) # max(x) = 1, min(x) = 0 
   # Run optimization op (backprop) and cost op (to get loss value) 
   _, c = sess.run([optimizer, cost], feed_dict={X: batch_xs}) 
  if epoch % display_step == 0: 
   print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c)) 
 print("Optimization Finished!") 
 
 encode_decode = sess.run( 
  y_pred, feed_dict={X: mnist.test.images[:examples_to_show]}) 
 f, a = plt.subplots(2, 10, figsize=(10, 2)) 
 for i in range(examples_to_show): 
  a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28))) 
  a[1][i].imshow(np.reshape(encode_decode[i], (28, 28))) 
 plt.show()

代码解读:

首先,导入将要使用到的各种库和数据集,定义各个参数如学习率、训练迭代次数等,清晰明了便于后期修改。由于自编码器的神经网络结构非常有规律性,都是xW + b的结构,故将每一层的权重W和偏置b的变量tf.Variable统一置于一个字典中,通过字典的key值更加清晰明了的描述。模型构建思路上,将编码器部分和解码器部分分开构建,每一层的激活函数使用Sigmoid函数,编码器通常与编码器使用同样的激活函数。通常编码器部分和解码器部分是一个互逆的过程,例如我们设计将784维降至256维再降至128维的编码器,解码器对应的就是从128维解码至256维再解码至784维。定义代价函数,代价函数表示为解码器的输出与原始输入的最小二乘法表达,优化器采用AdamOptimizer训练阶段每次循环将所有的训练数据都参与训练。经过训练,最终将训练结果与原数据可视化进行对照,如下图,还原度较高。如果增大训练循环次数或者增加自编码器的层数,可以得到更好的还原效果。

运行结果:

TensorFlow实现AutoEncoder自编码器

2. Encoder

Encoder编码器工作原理与AutoEncoder相同,我们将编码得到的低维“特征值”在低维空间中可视化出来,直观显示数据的聚类效果。具体地说,将784维的MNIST数据一步步的从784到128到64到10最后降至2维,在2维坐标系中展示遇上一个例子不同的是,在编码器的最后一层中我们不采用Sigmoid激活函数,而是将采用默认的线性激活函数,使输出为(-∞,+∞)。

完整代码:

import tensorflow as tf 
import matplotlib.pyplot as plt 
 
from tensorflow.examples.tutorials.mnist import input_data 
mnist = input_data.read_data_sets("MNIST_data/", one_hot=False) 
 
learning_rate = 0.01 
training_epochs = 10 
batch_size = 256 
display_step = 1 
n_input = 784 
X = tf.placeholder("float", [None, n_input]) 
 
n_hidden_1 = 128 
n_hidden_2 = 64 
n_hidden_3 = 10 
n_hidden_4 = 2 
weights = { 
 'encoder_h1': tf.Variable(tf.truncated_normal([n_input, n_hidden_1],)), 
 'encoder_h2': tf.Variable(tf.truncated_normal([n_hidden_1, n_hidden_2],)), 
 'encoder_h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_3],)), 
 'encoder_h4': tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_4],)), 
 'decoder_h1': tf.Variable(tf.truncated_normal([n_hidden_4, n_hidden_3],)), 
 'decoder_h2': tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_2],)), 
 'decoder_h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_1],)), 
 'decoder_h4': tf.Variable(tf.truncated_normal([n_hidden_1, n_input],)), 
} 
biases = { 
 'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])), 
 'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])), 
 'encoder_b3': tf.Variable(tf.random_normal([n_hidden_3])), 
 'encoder_b4': tf.Variable(tf.random_normal([n_hidden_4])), 
 'decoder_b1': tf.Variable(tf.random_normal([n_hidden_3])), 
 'decoder_b2': tf.Variable(tf.random_normal([n_hidden_2])), 
 'decoder_b3': tf.Variable(tf.random_normal([n_hidden_1])), 
 'decoder_b4': tf.Variable(tf.random_normal([n_input])), 
} 
def encoder(x): 
 layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']), 
         biases['encoder_b1'])) 
 layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']), 
         biases['encoder_b2'])) 
 layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['encoder_h3']), 
         biases['encoder_b3'])) 
 # 为了便于编码层的输出,编码层随后一层不使用激活函数 
 layer_4 = tf.add(tf.matmul(layer_3, weights['encoder_h4']), 
         biases['encoder_b4']) 
 return layer_4 
 
def decoder(x): 
 layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']), 
         biases['decoder_b1'])) 
 layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']), 
         biases['decoder_b2'])) 
 layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['decoder_h3']), 
        biases['decoder_b3'])) 
 layer_4 = tf.nn.sigmoid(tf.add(tf.matmul(layer_3, weights['decoder_h4']), 
        biases['decoder_b4'])) 
 return layer_4 
 
encoder_op = encoder(X) 
decoder_op = decoder(encoder_op) 
 
y_pred = decoder_op 
y_true = X 
 
cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2)) 
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) 
 
with tf.Session() as sess: 
 # tf.initialize_all_variables() no long valid from 
 # 2017-03-02 if using tensorflow >= 0.12 
 if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1: 
  init = tf.initialize_all_variables() 
 else: 
  init = tf.global_variables_initializer() 
 sess.run(init) 
 total_batch = int(mnist.train.num_examples/batch_size) 
 for epoch in range(training_epochs): 
  for i in range(total_batch): 
   batch_xs, batch_ys = mnist.train.next_batch(batch_size) # max(x) = 1, min(x) = 0 
   _, c = sess.run([optimizer, cost], feed_dict={X: batch_xs}) 
  if epoch % display_step == 0: 
   print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c)) 
 print("Optimization Finished!") 
 
 encoder_result = sess.run(encoder_op, feed_dict={X: mnist.test.images}) 
 plt.scatter(encoder_result[:, 0], encoder_result[:, 1], c=mnist.test.labels) 
 plt.colorbar() 
 plt.show()

实验结果:

TensorFlow实现AutoEncoder自编码器

由结果可知,2维编码特征有较好的聚类效果,图中每个颜色代表了一个数字,聚集性很好。

当然,本次实验所得到的结果只是对AutoEncoder做一个简单的介绍,要想得到期望的效果,还应该设计更加复杂的自编码器结构,得到区分性更好的特征。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python处理圆角图片、圆形图片的例子
Apr 25 Python
Python实现爬取需要登录的网站完整示例
Aug 19 Python
Python开发中爬虫使用代理proxy抓取网页的方法示例
Sep 26 Python
Python实现嵌套列表及字典并按某一元素去重复功能示例
Nov 30 Python
在python 中实现运行多条shell命令
Jan 07 Python
python多任务及返回值的处理方法
Jan 22 Python
Python面向对象程序设计多继承和多态用法示例
Apr 08 Python
python通过txt文件批量安装依赖包的实现步骤
Aug 13 Python
Python如何急速下载第三方库详解
Nov 02 Python
Python实战之用tkinter库做一个鼠标模拟点击器
Apr 27 Python
pandas:get_dummies()与pd.factorize()的用法及区别说明
May 21 Python
Pyhton爬虫知识之正则表达式详解
Apr 01 Python
TensorFlow实现MLP多层感知机模型
Mar 09 #Python
TensorFlow实现Softmax回归模型
Mar 09 #Python
用python实现百度翻译的示例代码
Mar 09 #Python
TensorFlow深度学习之卷积神经网络CNN
Mar 09 #Python
TensorFlow实现卷积神经网络CNN
Mar 09 #Python
新手常见6种的python报错及解决方法
Mar 09 #Python
Python 函数基础知识汇总
Mar 09 #Python
You might like
如何开发一个虚拟域名系统
2006/10/09 PHP
mysql 中InnoDB和MyISAM的区别分析小结
2008/04/15 PHP
PHP 冒泡排序 二分查找 顺序查找 二维数组排序算法函数的详解
2013/06/25 PHP
PHP中的Streams详细介绍
2014/11/12 PHP
php数组添加与删除单元的常用函数实例分析
2015/02/16 PHP
简单的php+mysql聊天室实现方法(附源码)
2016/01/05 PHP
PHP框架Laravel插件Pagination实现自定义分页
2020/04/22 PHP
thinkphp3.2嵌入百度编辑器ueditor的实例代码
2017/07/13 PHP
php合并数组并保留键值的实现方法
2018/03/12 PHP
Laravel框架自定义公共函数的引入操作示例
2019/04/16 PHP
在js中单选框和复选框获取值的方式
2009/11/06 Javascript
JavaScript 数组循环引起的思考
2010/01/01 Javascript
写js时遇到的一些小问题
2010/12/06 Javascript
javascript弹出窗口中增加确定取消按钮
2016/06/24 Javascript
javascript 小数乘法结果错误的处理方法
2016/07/28 Javascript
js Date()日期函数浏览器兼容问题解决方法
2017/09/12 Javascript
vue嵌套路由与404重定向实现方法分析
2018/05/04 Javascript
jQuery事件多次绑定与解绑问题实例分析
2019/02/19 jQuery
JS+php后台实现文件上传功能详解
2019/03/02 Javascript
django自定义Field实现一个字段存储以逗号分隔的字符串
2014/04/27 Python
Python发送form-data请求及拼接form-data内容的方法
2016/03/05 Python
Python实现Linux命令xxd -i功能
2016/03/06 Python
Java Web开发过程中登陆模块的验证码的实现方式总结
2016/05/25 Python
Python3编程实现获取阿里云ECS实例及监控的方法
2017/08/18 Python
PyCharm设置护眼背景色的方法
2018/10/29 Python
python机器学习库scikit-learn:SVR的基本应用
2019/06/26 Python
多视角3D可旋转的HTML5 Logo动画
2016/03/02 HTML / CSS
英格兰足协官方商店:England Store
2019/07/12 全球购物
网络技术专业推荐信
2014/02/20 职场文书
父母寄语大全
2014/04/12 职场文书
工厂车间标语
2014/06/19 职场文书
本科应届生自荐信
2014/06/29 职场文书
作风建设年活动总结
2014/08/27 职场文书
工程部主管岗位职责
2015/02/12 职场文书
消费者理赔投诉书
2015/07/02 职场文书
Win11如何修改dns?Win11修改dns图文教程
2022/01/18 数码科技