简单学习Python多进程Multiprocessing


Posted in Python onAugust 29, 2017

1.1 什么是 Multiprocessing

多线程在同一时间只能处理一个任务。

可把任务平均分配给每个核,而每个核具有自己的运算空间。

1.2 添加进程 Process

与线程类似,如下所示,但是该程序直接运行无结果,因为IDLE不支持多进程,在命令行终端运行才有结果显示

import multiprocessing as mp

def job(a,b):
 print('abc')
if __name__=='__main__':
 p1=mp.Process(target=job,args=(1,2))
 p1.start()
 p1.join()

1.3 存储进程输出 Queue

不知道为什么下面的这个程序可以在IDLE中正常运行。首先定义了一个job函数作系列数学运算,然后将结果放到res中,在main函数运行,取出queue中存储的结果再进行一次加法运算。

import multiprocessing as mp

def job(q):
 res=0
 for i in range(1000):
 res+=i+i**2+i**3
 q.put(res)

 
if __name__ == '__main__':
 q=mp.Queue()
 p1 = mp.Process(target=job,args=(q,))#注意当参数只有一个时,应加上逗号
 p2 = mp.Process(target=job,args=(q,)) 
 p1.start()
 p2.start()
 
 p1.join()
 p2.join()
 res1=q.get()
 res2=q.get()
 print(res1+res2)

结果如下所示:

 简单学习Python多进程Multiprocessing

1.4 效率比对 threading & multiprocessing

在job函数中定义了数学运算,比较正常情况、多线程和多进程分别的运行时间。

import multiprocessing as mp
import threading as td
import time

def job(q):
 res = 0
 for i in range(10000000):
 res += i+i**2+i**3
 q.put(res) # queue

def multicore():
 q = mp.Queue()
 p1 = mp.Process(target=job, args=(q,))
 p2 = mp.Process(target=job, args=(q,))
 p1.start()
 p2.start()
 p1.join()
 p2.join()
 res1 = q.get()
 res2 = q.get()
 print('multicore:' , res1+res2)

def normal():
 res = 0
 for _ in range(2):#线程或进程都构造了两个,进行了两次运算,所以这里循环两次
 for i in range(10000000):
  res += i+i**2+i**3
 print('normal:', res)

def multithread():
 q = mp.Queue()
 t1 = td.Thread(target=job, args=(q,))
 t2 = td.Thread(target=job, args=(q,))
 t1.start()
 t2.start()
 t1.join()
 t2.join()
 res1 = q.get()
 res2 = q.get()
 print('multithread:', res1+res2)

if __name__ == '__main__':
 st = time.time()
 normal()
 st1= time.time()
 print('normal time:', st1 - st)
 multithread()
 st2 = time.time()
 print('multithread time:', st2 - st1)
 multicore()
 print('multicore time:', time.time()-st2)

在视频中的运行结果是多进程<正常<多线程,而我的运行结果为下图所示:

简单学习Python多进程Multiprocessing

综上,多核/多进程运行最快,说明在同时间运行了多个任务,而多线程却不一定会比正常情况下的运行来的快,这和多线程中的GIL有关。

1.5 进程池

进程池Pool,就是我们将所要运行的东西,放到池子里,Python会自行解决多进程的问题。

import multiprocessing as mp

def job(x):
 return x*x

def multicore():
 pool=mp.Pool(processes=2)#定义一个Pool,并定义CPU核数量为2
 res=pool.map(job,range(10))
 print(res)
 res=pool.apply_async(job,(2,))
 print(res.get())
 multi_res=[pool.apply_async(job,(i,)) for i in range(10)]
 print([res.get()for res in multi_res])

if __name__=='__main__':
 multicore()

运行结果如下所示:

简单学习Python多进程Multiprocessing

首先定义一个池子,有了池子之后,就可以让池子对应某一个函数,在上述代码中定义的pool对应job函数。我们向池子里丢数据,池子就会返回函数返回的值。 Pool和之前的Process的不同点是丢向Pool的函数有返回值,而Process的没有返回值。

接下来用map()获取结果,在map()中需要放入函数和需要迭代运算的值,然后它会自动分配给CPU核,返回结果

 简单学习Python多进程Multiprocessing

我们怎么知道Pool是否真的调用了多个核呢?我们可以把迭代次数增大些,然后打开CPU负载看下CPU运行情况

打开CPU负载(Mac):活动监视器 > CPU > CPU负载(单击一下即可)

Pool默认大小是CPU的核数,我们也可以通过在Pool中传入processes参数即可自定义需要的核数量。

Pool除了可以用map来返回结果之外,还可以用apply_async(),与map不同的是,只能传递一个值,只会放入一个核进行计算,但是传入值时要注意是可迭代的,所以在传入值后需要加逗号, 同时需要用get()方法获取返回值。所对应的代码为:

res=pool.apply_async(job,(2,))
print(res.get())

运行结果为4。

由于传入值是可以迭代的,则我们同样可以使用apply_async()来输出多个结果。如果在apply_async()中输入多个传入值:

res = pool.apply_async(job, (2,3,4,))

结果会报错:

TypeError: job() takes exactly 1 argument (3 given)

即apply_async()只能输入一组参数。

在此我们将apply_async()放入迭代器中,定义一个新的multi_res

multi_res = [pool.apply_async(job, (i,)) for i in range(10)]

同样在取出值时需要一个一个取出来

print([res.get() for res in multi_res])

apply用迭代器的运行结果与map取出的结果相同。

note:

(1)Pool默认调用是CPU的核数,传入processes参数可自定义CPU核数

(2)map() 放入迭代参数,返回多个结果

(3)apply_async()只能放入一组参数,并返回一个结果,如果想得到map()的效果需要通过迭代

1.6 共享内存 shared memory

只有通过共享内存才能让CPU之间进行交流。

通过Value将数据存储在一个共享的内存表中。

import multiprocessing as mp

value1 = mp.Value('i', 0) 
value2 = mp.Value('d', 3.14)

 其中,i和d表示数据类型。i为带符号的整型,d为双精浮点类型。更多数据类型可参考网址:https://docs.python.org/3/library/array.html

在多进程中有一个Array类,可以和共享内存交互,来实现进程之间共享数据。

和numpy中的不同,这里的Array只能是一维的,并且需要定义数据类型否则会报错。

array = mp.Array('i', [1, 2, 3, 4])

1.7 进程锁 Lock

首先是不加进程锁的运行情况,在下述代码中定义了共享变量v,定义了两个进程,均可对v进行操作。job函数的作用是每隔0.1s输出一次累加num的值,累加值num在两个进程中分别为1和3。

import multiprocessing as mp
import time

def job(v,num):
 for _ in range(10):
 time.sleep(0.1)#暂停0.1s,让输出效果更明显
 v.value+=num #v.value获取共享变量值
 print(v.value)
 
def multicore():
 v=mp.Value('i',0)#定义共享变量
 p1=mp.Process(target=job,args=(v,1))
 p2=mp.Process(target=job,args=(v,3))
 p1.start()
 p2.start()
 p1.join()
 p2.join()


if __name__=='__main__':
 multicore()

 运行结果如下所示:

简单学习Python多进程Multiprocessing

可以看到两个进程互相抢占共享内存v。

为了解决上述不同进程抢共享资源的问题,我们可以用加进程锁来解决。

首先需要定义一个进程锁:

l = mp.Lock() # 定义一个进程锁

然后将进程锁的信息传入各个进程中

p1 = mp.Process(target=job, args=(v,1,l)) # 需要将Lock传入
 p2 = mp.Process(target=job, args=(v,3,l))

在job()中设置进程锁的使用,保证运行时一个进程的对锁内内容的独占

def job(v, num, l):
 l.acquire() # 锁住
 for _ in range(5):
 time.sleep(0.1) 
 v.value += num # v.value获取共享内存
 print(v.value)
 l.release() # 释放

完整代码:

def job(v, num, l):
 l.acquire() # 锁住
 for _ in range(5):
 time.sleep(0.1) 
 v.value += num # 获取共享内存
 print(v.value)
 l.release() # 释放

def multicore():
 l = mp.Lock() # 定义一个进程锁
 v = mp.Value('i', 0) # 定义共享内存
 p1 = mp.Process(target=job, args=(v,1,l)) # 需要将lock传入
 p2 = mp.Process(target=job, args=(v,3,l)) 
 p1.start()
 p2.start()
 p1.join()
 p2.join()

if __name__ == '__main__':
 multicore()

运行结果如下所示:

简单学习Python多进程Multiprocessing

可以看到进程1运行完之后才运行进程2。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python实现豆瓣图片下载的方法
May 25 Python
理解Python垃圾回收机制
Feb 12 Python
python+django快速实现文件上传
Oct 24 Python
python 全局变量的import机制介绍
Sep 07 Python
pandas or sql计算前后两行数据间的增值方法
Apr 20 Python
Python爬虫包BeautifulSoup实例(三)
Jun 17 Python
Python字典创建 遍历 添加等实用基础操作技巧
Sep 13 Python
python reverse反转部分数组的实例
Dec 13 Python
给我一面国旗 python帮你实现
Sep 30 Python
Python坐标线性插值应用实现
Nov 13 Python
完美解决pyinstaller打包报错找不到依赖pypiwin32或pywin32-ctypes的错误
Apr 01 Python
matplotlib如何设置坐标轴刻度的个数及标签的方法总结
Jun 11 Python
Python简单实现自动删除目录下空文件夹的方法
Aug 29 #Python
Python实现文件内容批量追加的方法示例
Aug 29 #Python
Python实现解析Bit Torrent种子文件内容的方法
Aug 29 #Python
Python 3.x读写csv文件中数字的方法示例
Aug 29 #Python
在python3环境下的Django中使用MySQL数据库的实例
Aug 29 #Python
Python网络爬虫与信息提取(实例讲解)
Aug 29 #Python
Python开发的HTTP库requests详解
Aug 29 #Python
You might like
PHP设计模式之结构模式的深入解析
2013/06/13 PHP
php将print_r处理后的数据还原为原始数组的解决方法
2016/11/02 PHP
Nginx实现反向代理
2017/09/20 Servers
记录几个javascript有关的小细节
2007/04/02 Javascript
JavaScript 开发中规范性的一点感想
2009/06/23 Javascript
JSQL 批量图片切换的实现代码
2010/05/05 Javascript
元素的内联事件处理函数的特殊作用域在各浏览器中存在差异
2011/01/12 Javascript
datagrid框架的删除添加与修改
2013/04/08 Javascript
Js中获取frames中的元素示例代码
2013/07/30 Javascript
jquery ajax修改全局变量示例代码
2013/11/08 Javascript
浅谈使用MVC模式进行JavaScript程序开发
2015/11/10 Javascript
javascript设计模式--策略模式之输入验证
2015/11/27 Javascript
Node.js文件操作方法汇总
2016/03/22 Javascript
jQuery事件处理的特征(事件命名机制)
2016/08/23 Javascript
Bootstrap Tree View简单而优雅的树结构组件实例解析
2017/06/15 Javascript
JavaScript正则表达式校验与递归函数实际应用实例解析
2017/08/04 Javascript
微信小程序 冒泡事件原理解析
2019/09/27 Javascript
Vue 禁用浏览器的前进后退操作
2020/09/04 Javascript
详解为什么Vue中的v-if和v-for不建议一起用
2021/01/13 Vue.js
[05:35]DOTA2英雄梦之声_第13期_拉比克
2014/06/21 DOTA
[54:10]完美世界DOTA2联赛PWL S2 Magma vs FTD 第二场 11.29
2020/12/03 DOTA
Python中map和列表推导效率比较实例分析
2015/06/17 Python
Django实现学员管理系统
2019/02/26 Python
python反编译学习之字节码详解
2019/05/19 Python
python IDLE 背景以及字体大小的修改方法
2019/07/12 Python
Python3 批量扫描端口的例子
2019/07/25 Python
django自带的权限管理Permission用法说明
2020/05/13 Python
Python 如何对文件目录操作
2020/07/10 Python
销售部主管岗位职责
2013/12/18 职场文书
2015届本科毕业生自我鉴定
2014/09/27 职场文书
如何写辞职信
2015/05/13 职场文书
毛主席纪念堂观后感
2015/06/17 职场文书
教育教学工作反思
2016/02/24 职场文书
matplotlib如何设置坐标轴刻度的个数及标签的方法总结
2021/06/11 Python
Vue提供的三种调试方式你知道吗
2022/01/18 Vue.js
centos环境下nginx高可用集群的搭建指南
2022/07/23 Servers