Java 轮询锁使用时遇到问题


Posted in Java/Android onMay 11, 2022

前言:

当我们遇到死锁之后,除了可以手动重启程序解决之外,还可以考虑使用顺序锁和轮询锁,这部分的内容可以参考上一篇文章Java 死锁解决方案顺序锁和轮询锁,这里就不再赘述了。然而,轮询锁在使用的过程中,如果使用不当会带来新的严重问题,所以本篇我们就来了解一下这些问题,以及相应的解决方案。

问题演示

当我们没有使用轮询锁之前,可能会出现这样的问题:

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class DeadLockByReentrantLock {
    public static void main(String[] args) {
        Lock lockA = new ReentrantLock(); // 创建锁 A
        Lock lockB = new ReentrantLock(); // 创建锁 B

        // 创建线程 1
        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                lockA.lock(); // 加锁
                System.out.println("线程 1:获取到锁 A!");
                try {
                    Thread.sleep(1000);
                    System.out.println("线程 1:等待获取 B...");
                    lockB.lock(); // 加锁
                    try {
                        System.out.println("线程 1:获取到锁 B!");
                    } finally {
                        lockA.unlock(); // 释放锁
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    lockA.unlock(); // 释放锁
                }
            }
        });
        t1.start(); // 运行线程

        // 创建线程 2
        Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                lockB.lock(); // 加锁
                System.out.println("线程 2:获取到锁 B!");
                try {
                    Thread.sleep(1000);
                    System.out.println("线程 2:等待获取 A...");
                    lockA.lock(); // 加锁
                    try {
                        System.out.println("线程 2:获取到锁 A!");
                    } finally {
                        lockA.unlock(); // 释放锁
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    lockB.unlock(); // 释放锁
                }
            }
        });
        t2.start(); // 运行线程
    }
}

以上代码的执行结果如下:

Java 轮询锁使用时遇到问题

从上述结果可以看出,此时程序中出现了线程相互等待,并尝试获取对方(锁)资源的情况,这就是典型的死锁问题了。

简易版轮询锁

当出现死锁问题之后,我们就可以使用轮询锁来解决它了,它的实现思路是通过轮询的方式来获取多个锁,如果中途有任意一个锁获取失败,则执行回退操作,释放当前线程拥有的所有锁,等待下一次重新执行,这样就可以避免多个线程同时拥有并霸占锁资源了,从而直接解决了死锁的问题,简易版的轮询锁实现如下:

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class SolveDeadLockExample2 {
    public static void main(String[] args) {
        Lock lockA = new ReentrantLock(); // 创建锁 A
        Lock lockB = new ReentrantLock(); // 创建锁 B

        // 创建线程 1(使用轮询锁)
        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                // 调用轮询锁
                pollingLock(lockA, lockB);
            }
        });
        t1.start(); // 运行线程

        // 创建线程 2
        Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                lockB.lock(); // 加锁
                System.out.println("线程 2:获取到锁 B!");
                try {
                    Thread.sleep(1000);
                    System.out.println("线程 2:等待获取 A...");
                    lockA.lock(); // 加锁
                    try {
                        System.out.println("线程 2:获取到锁 A!");
                    } finally {
                        lockA.unlock(); // 释放锁
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    lockB.unlock(); // 释放锁
                }
            }
        });
        t2.start(); // 运行线程
    }

    /**
     * 轮询锁
     */
    private static void pollingLock(Lock lockA, Lock lockB) {
        // 轮询锁
        while (true) {
            if (lockA.tryLock()) { // 尝试获取锁
                System.out.println("线程 1:获取到锁 A!");
                try {
                    Thread.sleep(1000);
                    System.out.println("线程 1:等待获取 B...");
                    if (lockB.tryLock()) { // 尝试获取锁
                        try {
                            System.out.println("线程 1:获取到锁 B!");
                        } finally {
                            lockB.unlock(); // 释放锁
                            System.out.println("线程 1:释放锁 B.");
                            break;
                        }
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    lockA.unlock(); // 释放锁
                    System.out.println("线程 1:释放锁 A.");
                }
            }
            // 等待一秒再继续执行
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

以上代码的执行结果如下:

Java 轮询锁使用时遇到问题

从上述结果可以看出,当我们在程序中使用轮询锁之后就不会出现死锁的问题了,但以上轮询锁也并不是完美无缺的,下面我们来看看这个轮询锁会有什么样的问题?

问题1:死循环

以上简易版的轮询锁,如果遇到有一个线程一直霸占或者长时间霸占锁资源的情况,就会导致这个轮询锁进入死循环的状态,它会尝试一直获取锁资源,这样就会造成新的问题,带来不必要的性能开销,具体示例如下。

反例

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class SolveDeadLockExample {
    public static void main(String[] args) {
        Lock lockA = new ReentrantLock(); // 创建锁 A
        Lock lockB = new ReentrantLock(); // 创建锁 B

        // 创建线程 1(使用轮询锁)
        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                // 调用轮询锁
                pollingLock(lockA, lockB);
            }
        });
        t1.start(); // 运行线程

        // 创建线程 2
        Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                lockB.lock(); // 加锁
                System.out.println("线程 2:获取到锁 B!");
                try {
                    Thread.sleep(1000);
                    System.out.println("线程 2:等待获取 A...");
                    lockA.lock(); // 加锁
                    try {
                        System.out.println("线程 2:获取到锁 A!");
                    } finally {
                        lockA.unlock(); // 释放锁
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    // 如果此处代码未执行,线程 2 一直未释放锁资源
                    // lockB.unlock(); 
                }
            }
        });
        t2.start(); // 运行线程
    }

    /**
     * 轮询锁
     */
    public static void pollingLock(Lock lockA, Lock lockB) {
        while (true) {
            if (lockA.tryLock()) { // 尝试获取锁
                System.out.println("线程 1:获取到锁 A!");
                try {
                    Thread.sleep(1000);
                    System.out.println("线程 1:等待获取 B...");
                    if (lockB.tryLock()) { // 尝试获取锁
                        try {
                            System.out.println("线程 1:获取到锁 B!");
                        } finally {
                            lockB.unlock(); // 释放锁
                            System.out.println("线程 1:释放锁 B.");
                            break;
                        }
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    lockA.unlock(); // 释放锁
                    System.out.println("线程 1:释放锁 A.");
                }
            }
            // 等待一秒再继续执行
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

以上代码的执行结果如下: 

Java 轮询锁使用时遇到问题

从上述结果可以看出,线程 1 轮询锁进入了死循环的状态。

优化版

针对以上死循环的情况,我们可以改进的思路有以下两种:

  • 添加最大次数限制:如果经过了 n 次尝试获取锁之后,还未获取到锁,则认为获取锁失败,执行失败策略之后终止轮询(失败策略可以是记录日志或其他操作);
  • 添加最大时长限制:如果经过了 n 秒尝试获取锁之后,还未获取到锁,则认为获取锁失败,执行失败策略之后终止轮询。

以上策略任选其一就可以解决死循环的问题,出于实现成本的考虑,我们可以采用轮询最大次数的方式来改进轮询锁,

具体实现代码如下:

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class SolveDeadLockExample {

    public static void main(String[] args) {
        Lock lockA = new ReentrantLock(); // 创建锁 A
        Lock lockB = new ReentrantLock(); // 创建锁 B

        // 创建线程 1(使用轮询锁)
        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                // 调用轮询锁
                pollingLock(lockA, lockB, 3);
            }
        });
        t1.start(); // 运行线程

        // 创建线程 2
        Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                lockB.lock(); // 加锁
                System.out.println("线程 2:获取到锁 B!");
                try {
                    Thread.sleep(1000);
                    System.out.println("线程 2:等待获取 A...");
                    lockA.lock(); // 加锁
                    try {
                        System.out.println("线程 2:获取到锁 A!");
                    } finally {
                        lockA.unlock(); // 释放锁
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    // 线程 2 忘记释放锁资源
                    // lockB.unlock(); // 释放锁
                }
            }
        });
        t2.start(); // 运行线程
    }

    /**
     * 轮询锁
     *
     * maxCount:最大轮询次数
     */
    public static void pollingLock(Lock lockA, Lock lockB, int maxCount) {
        // 轮询次数计数器
        int count = 0;
        while (true) {
            if (lockA.tryLock()) { // 尝试获取锁
                System.out.println("线程 1:获取到锁 A!");
                try {
                    Thread.sleep(1000);
                    System.out.println("线程 1:等待获取 B...");
                    if (lockB.tryLock()) { // 尝试获取锁
                        try {
                            System.out.println("线程 1:获取到锁 B!");
                        } finally {
                            lockB.unlock(); // 释放锁
                            System.out.println("线程 1:释放锁 B.");
                            break;
                        }
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    lockA.unlock(); // 释放锁
                    System.out.println("线程 1:释放锁 A.");
                }
            }

            // 判断是否已经超过最大次数限制
            if (count++ > maxCount) {
                // 终止循环
                System.out.println("轮询锁获取失败,记录日志或执行其他失败策略");
                return;
            }

            // 等待一秒再继续尝试获取锁
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

以上代码的执行结果如下:

Java 轮询锁使用时遇到问题

从以上结果可以看出,当我们改进之后,轮询锁就不会出现死循环的问题了,它会尝试一定次数之后终止执行。

问题2:线程饿死

我们以上的轮询锁的轮询等待时间是固定时间,如下代码所示:

// 等待 1s 再尝试获取(轮询)锁
try {
    Thread.sleep(1000);
} catch (InterruptedException e) {
    e.printStackTrace();
}

这样在特殊情况下会造成线程饿死的问题,也就是轮询锁一直获取不到锁的问题,比如以下示例。

反例

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class SolveDeadLockExample {

    public static void main(String[] args) {
        Lock lockA = new ReentrantLock(); // 创建锁 A
        Lock lockB = new ReentrantLock(); // 创建锁 B

        // 创建线程 1(使用轮询锁)
        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                // 调用轮询锁
                pollingLock(lockA, lockB, 3);
            }
        });
        t1.start(); // 运行线程

        // 创建线程 2
        Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                while (true) {
                    lockB.lock(); // 加锁
                    System.out.println("线程 2:获取到锁 B!");
                    try {
                        System.out.println("线程 2:等待获取 A...");
                        lockA.lock(); // 加锁
                        try {
                            System.out.println("线程 2:获取到锁 A!");
                        } finally {
                            lockA.unlock(); // 释放锁
                        }
                    } finally {
                        lockB.unlock(); // 释放锁
                    }
                    // 等待一秒之后继续执行
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        });
        t2.start(); // 运行线程
    }

    /**
     * 轮询锁
     */
    public static void pollingLock(Lock lockA, Lock lockB, int maxCount) {
        // 循环次数计数器
        int count = 0;
        while (true) {
            if (lockA.tryLock()) { // 尝试获取锁
                System.out.println("线程 1:获取到锁 A!");
                try {
                    Thread.sleep(100); // 等待 0.1s(获取锁需要的时间)
                    System.out.println("线程 1:等待获取 B...");
                    if (lockB.tryLock()) { // 尝试获取锁
                        try {
                            System.out.println("线程 1:获取到锁 B!");
                        } finally {
                            lockB.unlock(); // 释放锁
                            System.out.println("线程 1:释放锁 B.");
                            break;
                        }
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    lockA.unlock(); // 释放锁
                    System.out.println("线程 1:释放锁 A.");
                }
            }

            // 判断是否已经超过最大次数限制
            if (count++ > maxCount) {
                // 终止循环
                System.out.println("轮询锁获取失败,记录日志或执行其他失败策略");
                return;
            }

            // 等待一秒再继续尝试获取锁
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

以上代码的执行结果如下:

Java 轮询锁使用时遇到问题

从上述结果可以看出,线程 1(轮询锁)一直未成功获取到锁,造成这种结果的原因是:线程 1 每次轮询的等待时间为固定的 1s,而线程 2 也是相同的频率,每 1s 获取一次锁,这样就会导致线程 2 会一直先成功获取到锁,而线程 1 则会一直处于“饿死”的情况,执行流程如下图所示:

Java 轮询锁使用时遇到问题

优化版

接下来,我们可以将轮询锁的固定等待时间,改进为固定时间 + 随机时间的方式,这样就可以避免因为获取锁的频率一致,而造成轮询锁“饿死”的问题了,具体实现代码如下:

import java.util.Random;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class SolveDeadLockExample {
    private static Random rdm = new Random();

    public static void main(String[] args) {
        Lock lockA = new ReentrantLock(); // 创建锁 A
        Lock lockB = new ReentrantLock(); // 创建锁 B

        // 创建线程 1(使用轮询锁)
        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                // 调用轮询锁
                pollingLock(lockA, lockB, 3);
            }
        });
        t1.start(); // 运行线程

        // 创建线程 2
        Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                while (true) {
                    lockB.lock(); // 加锁
                    System.out.println("线程 2:获取到锁 B!");
                    try {
                        System.out.println("线程 2:等待获取 A...");
                        lockA.lock(); // 加锁
                        try {
                            System.out.println("线程 2:获取到锁 A!");
                        } finally {
                            lockA.unlock(); // 释放锁
                        }
                    } finally {
                        lockB.unlock(); // 释放锁
                    }
                    // 等待一秒之后继续执行
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        });
        t2.start(); // 运行线程
    }

    /**
     * 轮询锁
     */
    public static void pollingLock(Lock lockA, Lock lockB, int maxCount) {
        // 循环次数计数器
        int count = 0;
        while (true) {
            if (lockA.tryLock()) { // 尝试获取锁
                System.out.println("线程 1:获取到锁 A!");
                try {
                    Thread.sleep(100); // 等待 0.1s(获取锁需要的时间)
                    System.out.println("线程 1:等待获取 B...");
                    if (lockB.tryLock()) { // 尝试获取锁
                        try {
                            System.out.println("线程 1:获取到锁 B!");
                        } finally {
                            lockB.unlock(); // 释放锁
                            System.out.println("线程 1:释放锁 B.");
                            break;
                        }
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    lockA.unlock(); // 释放锁
                    System.out.println("线程 1:释放锁 A.");
                }
            }

            // 判断是否已经超过最大次数限制
            if (count++ > maxCount) {
                // 终止循环
                System.out.println("轮询锁获取失败,记录日志或执行其他失败策略");
                return;
            }

            // 等待一定时间(固定时间 + 随机时间)之后再继续尝试获取锁
            try {
                Thread.sleep(300 + rdm.nextInt(8) * 100); // 固定时间 + 随机时间
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

以上代码的执行结果如下:

Java 轮询锁使用时遇到问题

从上述结果可以看出,线程 1(轮询锁)加入随机等待时间之后就不会出现线程饿死的问题了。

总结

本文我们介绍了轮询锁的用途,用于解决死锁问题,但简易版的轮询锁在某些情况下会造成死循环和线程饿死的问题,因此我们对轮询锁进行了优化,给轮询锁加入了最大轮询次数,以及随机轮询等待时间,这样就可以解决因为引入轮询锁而造成的新问题了,这样就可以愉快的使用它来解决死锁的问题了。

到此这篇关于Java 轮询锁使用时遇到问题解决方案的文章就介绍到这了!


Tags in this post...

Java/Android 相关文章推荐
分享一些Java的常用工具
Jun 11 Java/Android
详解Java线程池是如何重复利用空闲线程的
Jun 26 Java/Android
Spring Boot 实现敏感词及特殊字符过滤处理
Jun 29 Java/Android
JavaWeb 入门:Hello Servlet
Jul 16 Java/Android
Java反应式框架Reactor中的Mono和Flux
Jul 25 Java/Android
使用Java去实现超市会员管理系统
Mar 18 Java/Android
Java 深入探究讲解简单工厂模式
Apr 07 Java/Android
解决Springboot PostMapping无法获取数据的问题
May 06 Java/Android
Android Studio实现带三角函数对数运算功能的高级计算器
May 20 Java/Android
Java实现字符串转为驼峰格式的方法详解
Jul 07 Java/Android
maven 解包依赖项中的文件的解决方法
Jul 15 Java/Android
IDEA中sout快捷键无效问题的解决方法
Jul 23 Java/Android
Java 死锁解决方案
May 11 #Java/Android
JAVA springCloud项目搭建流程
May 11 #Java/Android
Java死锁的排查
May 11 #Java/Android
Java线程的6种状态与生命周期
May 11 #Java/Android
Java 多线程协作作业之信号同步
May 11 #Java/Android
Java 数组的使用
May 11 #Java/Android
Java Spring Lifecycle的使用
May 06 #Java/Android
You might like
php实现保存submit内容之后禁止刷新
2014/03/19 PHP
php截取字符串函数substr,iconv_substr,mb_substr示例以及优劣分析
2014/06/10 PHP
PHP判断字符串长度的两种方法很实用
2015/09/22 PHP
ExtJS 入门
2010/10/29 Javascript
jquery选择器需要注意的问题
2014/11/26 Javascript
JavaScript实现将文本框的值插入指定位置的方法
2015/08/13 Javascript
jQuery mobile 移动web(4)
2015/12/20 Javascript
JQuery对ASP.NET MVC数据进行更新删除
2016/07/13 Javascript
微信js-sdk界面操作接口用法示例
2016/10/12 Javascript
jQuery插件FusionCharts绘制ScrollColumn2D图效果示例【附demo源码下载】
2017/03/22 jQuery
nodejs模块学习之connect解析
2017/07/05 NodeJs
Vue实现调节窗口大小时触发事件动态调节更新组件尺寸的方法
2018/09/15 Javascript
微信小程序学习笔记之本地数据缓存功能详解
2019/03/29 Javascript
详解JavaScript中关于this指向的4种情况
2019/04/18 Javascript
js和jquery判断数据类型的4种方法总结
2020/08/28 jQuery
微信小程序实现点击导航条切换页面
2020/11/19 Javascript
浅谈Vue开发人员的7个最好的VSCode扩展
2021/01/20 Vue.js
[03:09]DOTA2亚洲邀请赛 LGD战队出场宣传片
2015/02/07 DOTA
[01:20]2018DOTA2亚洲邀请赛总决赛战队LGD晋级之路
2018/04/07 DOTA
Python THREADING模块中的JOIN()方法深入理解
2015/02/18 Python
python实现K最近邻算法
2018/01/29 Python
python如何把嵌套列表转变成普通列表
2018/03/20 Python
python 使用值来排序一个字典的方法
2018/11/16 Python
Python函数返回不定数量的值方法
2019/01/22 Python
python 动态调用函数实例解析
2019/10/21 Python
python小程序基于Jupyter实现天气查询的方法
2020/03/27 Python
零基础学python应该从哪里入手
2020/08/11 Python
琳达·法罗眼镜英国官网:Linda Farrow英国
2021/01/19 全球购物
大门门卫岗位职责
2013/11/30 职场文书
小学中秋节活动方案
2014/02/06 职场文书
入党积极分子学习两会心得体会范文
2014/03/17 职场文书
大学生社会实践评语
2014/04/25 职场文书
班主任工作经验交流材料
2014/05/13 职场文书
化学专业大学生职业生涯规划范文
2014/09/13 职场文书
团结友爱主题班会
2015/08/13 职场文书
幼师必备:幼儿园期末教师评语50条
2019/11/01 职场文书