pytorch中F.avg_pool1d()和F.avg_pool2d()的使用操作


Posted in Python onMay 22, 2021

F.avg_pool1d()数据是三维输入

input维度: (batch_size,channels,width)channel可以看成高度

kenerl维度:(一维:表示width的跨度)channel和输入的channel一致可以认为是矩阵的高度

假设kernel_size=2,则每俩列相加求平均,stride默认和kernel_size保持一致,越界则丢弃(下面表示1,2列和3,4列相加求平均)

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=2)
m

tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000, 1.0000],
         [1.0000, 1.0000],
         [0.0000, 0.5000],
         [1.0000, 1.0000],
         [1.0000, 1.0000]]])

假设kenerl_size=3,表示前3列相加求平均,后面的不足3列丢弃

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=3)
m
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.],
         [1.],
         [0.],
         [1.],
         [1.]]])

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=4)
m
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000],
         [1.0000],
         [0.2500],
         [1.0000],
         [1.0000]]])

假设stride=1每次移动一个步伐

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=2,stride=1)
m
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000, 1.0000, 1.0000, 1.0000],
         [1.0000, 1.0000, 1.0000, 1.0000],
         [0.0000, 0.0000, 0.5000, 1.0000],
         [1.0000, 1.0000, 1.0000, 1.0000],
         [1.0000, 1.0000, 1.0000, 1.0000]]])
 
input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=4,stride=1)
m
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000, 1.0000],
         [1.0000, 1.0000],
         [0.2500, 0.5000],
         [1.0000, 1.0000],
         [1.0000, 1.0000]]])

F.avg_pool2d()数据是四维输入

input维度: (batch_size,channels,height,width)

kenerl维度:(二维:表示width的跨度)channel和输入的channle一致,如果数据是三维,则channel为1.(如果只写一个数n,kenerl=(n,n))

stride默认和kenerl一致,这是个二维的,所以在height和width上均和kenerl一致,越界同样丢弃。

跟cnn卷积一致

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input.size())
print(input)
m = F.avg_pool2d(input,kernel_size=(4,4))
m
torch.Size([1, 5, 5])
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[0.8125]]])

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input.size())
print(input)
m = F.avg_pool2d(input,kernel_size=(4,4),stride=1)
m
torch.Size([1, 5, 5])
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[0.8125, 0.8750],
         [0.8125, 0.8750]]])

如果求列的平均kenerl=(1,5),此时默认stride=(1,5)

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input.size())
print(input)
m = F.avg_pool2d(input,kernel_size=(1,5))
m
torch.Size([1, 5, 5])
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000],
         [1.0000],
         [0.4000],
         [1.0000],
         [1.0000]]])

如果求行的平均kenerl=(5,1),此时默认stride=(5,1),用卷积的概念取思考

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input.size())
print(input)
m = F.avg_pool2d(input,kernel_size=(5,1))
m
torch.Size([1, 5, 5])
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[0.8000, 0.8000, 0.8000, 1.0000, 1.0000]]])

对于四维的数据,channel默认和输入一致

input=torch.randn(10,3,4,4)
m=F.avg_pool2d(input,(4,4))
print(m.size())
torch.Size([10, 3, 1, 1])

补充:PyTorch中AdaptiveAvgPool函数解析

自适应池化(AdaptiveAvgPool1d):

对输入信号,提供1维的自适应平均池化操作 对于任何输入大小的输入,可以将输出尺寸指定为H*W,但是输入和输出特征的数目不会变化。

torch.nn.AdaptiveAvgPool1d(output_size)
#output_size:输出尺寸

对输入信号,提供1维的自适应平均池化操作 对于任何输入大小的输入,可以将输出尺寸指定为H*W,但是输入和输出特征的数目不会变化。

# target output size of 5
m = nn.AdaptiveAvgPool1d(5)
input = autograd.Variable(torch.randn(1, 64, 8))
output = m(input)

自适应池化(AdaptiveAvgPool2d):

class torch.nn.AdaptiveAvgPool2d(output_size)

对输入信号,提供2维的自适应平均池化操作 对于任何输入大小的输入,可以将输出尺寸指定为H*W,但是输入和输出特征的数目不会变化。

参数:

output_size: 输出信号的尺寸,可以用(H,W)表示H*W的输出,也可以使用耽搁数字H表示H*H大小的输出

# target output size of 5x7
m = nn.AdaptiveAvgPool2d((5,7))
input = autograd.Variable(torch.randn(1, 64, 8, 9))
# target output size of 7x7 (square)
m = nn.AdaptiveAvgPool2d(7)
input = autograd.Variable(torch.randn(1, 64, 10, 9))
output = m(input)

自适应池化的数学解释:

pytorch中F.avg_pool1d()和F.avg_pool2d()的使用操作

pytorch中F.avg_pool1d()和F.avg_pool2d()的使用操作

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python中列表、字典、元组数据结构的简单学习笔记
Mar 20 Python
通过Python实现自动填写调查问卷
Sep 06 Python
python脚本实现验证码识别
Jun 07 Python
python学生信息管理系统(完整版)
Apr 05 Python
浅谈python3.x pool.map()方法的实质
Jan 16 Python
python计算阶乘和的方法(1!+2!+3!+...+n!)
Feb 01 Python
python登录WeChat 实现自动回复实例详解
May 28 Python
django的model操作汇整详解
Jul 26 Python
利用python实现汉字转拼音的2种方法
Aug 12 Python
python取均匀不重复的随机数方式
Nov 27 Python
Python使用pymysql模块操作mysql增删改查实例分析
Dec 19 Python
OpenCV-Python实现人脸磨皮算法
Jun 07 Python
用python实现监控视频人数统计
Python基础之进程详解
如何在C++中调用Python
May 21 #Python
python 定义函数 返回值只取其中一个的实现
May 21 #Python
Python+Appium实现自动抢微信红包
写好Python代码的几条重要技巧
windows安装python超详细图文教程
You might like
用PHP函数解决SQL injection
2006/10/09 PHP
解析PHP的session过期设置
2013/06/29 PHP
php 批量替换程序的具体实现代码
2013/10/04 PHP
Thinkphp开发--集成极光推送
2017/09/15 PHP
PHP解决高并发的优化方案实例
2020/12/10 PHP
javascript仿qq界面的折叠菜单实现代码
2012/12/12 Javascript
javascript类型转换示例
2014/04/29 Javascript
javascript实现动态模态绑定grid过程代码
2014/09/22 Javascript
Javascript中的包装类型介绍
2015/04/02 Javascript
使用jQuery实现更改默认alert框体
2015/04/13 Javascript
JavaScript判断对象是否为数组
2015/12/22 Javascript
使用jQuery监听DOM元素大小变化
2016/02/24 Javascript
JavaScript驾驭网页-CSS与DOM
2016/03/24 Javascript
原生JavaScript编写canvas版的连连看游戏
2016/05/29 Javascript
JSON与js对象序列化实例详解
2017/03/16 Javascript
8个有意思的JavaScript面试题
2019/07/30 Javascript
详解Angular Karma测试的持续集成实践
2019/11/15 Javascript
node.js中npm包管理工具用法分析
2020/02/14 Javascript
python制作小说爬虫实录
2017/08/14 Python
Python中static相关知识小结
2018/01/02 Python
基于python生成器封装的协程类
2019/03/20 Python
爬虫代理池Python3WebSpider源代码测试过程解析
2019/12/20 Python
在Pytorch中计算自己模型的FLOPs方式
2019/12/30 Python
VSCode基础使用与VSCode调试python程序入门的图文教程
2020/03/30 Python
HTML5添加鼠标悬浮音响效果不使用FLASH
2014/04/23 HTML / CSS
一些常用的HTML5模式(pattern) 总结
2015/07/14 HTML / CSS
西班牙拥有最佳品牌的动物商店:Animalear.com
2018/01/05 全球购物
日本小田急百货官网:Odakyu
2018/07/19 全球购物
中国跨镜手机配件批发在线商店:TVC-Mall
2019/08/20 全球购物
模具设计与制造专业求职信
2014/07/19 职场文书
收款委托书范本
2014/09/11 职场文书
夫妻忠诚协议范文
2014/11/16 职场文书
先进工作者个人总结
2015/02/15 职场文书
2020年基层司法所建设情况调研报告
2019/11/30 职场文书
python第三方网页解析器 lxml 扩展库与 xpath 的使用方法
2021/04/06 Python
分布式锁为什么要选择Zookeeper而不是Redis?看完这篇你就明白了
2021/05/21 Redis