Keras 在fit_generator训练方式中加入图像random_crop操作


Posted in Python onJuly 03, 2020

使用Keras作前端写网络时,由于训练图像尺寸较大,需要做类似 tf.random_crop 图像裁剪操作。

为此研究了一番Keras下已封装的API。

Data Augmentation(数据扩充)

Data Aumentation 指使用下面或其他方法增加输入数据量。我们默认图像数据。

旋转&反射变换(Rotation/reflection): 随机旋转图像一定角度; 改变图像内容的朝向;

翻转变换(flip): 沿着水平或者垂直方向翻转图像;

缩放变换(zoom): 按照一定的比例放大或者缩小图像;

平移变换(shift): 在图像平面上对图像以一定方式进行平移;

可以采用随机或人为定义的方式指定平移范围和平移步长, 沿水平或竖直方向进行平移. 改变图像内容的位置;

尺度变换(scale): 对图像按照指定的尺度因子, 进行放大或缩小; 或者参照SIFT特征提取思想, 利用指定的尺度因子对图像滤波构造尺度空间. 改变图像内容的大小或模糊程度;

对比度变换(contrast): 在图像的HSV颜色空间,改变饱和度S和V亮度分量,保持色调H不变. 对每个像素的S和V分量进行指数运算(指数因子在0.25到4之间), 增加光照变化;

噪声扰动(noise): 对图像的每个像素RGB进行随机扰动, 常用的噪声模式是椒盐噪声和高斯噪声;

Data Aumentation 有很多好处,比如数据量较少时,用数据扩充来增加训练数据,防止过拟合。

ImageDataGenerator

在Keras中,ImageDataGenerator就是专门做数据扩充的。

from keras.preprocessing.image import ImageDataGenerator

注:Using TensorFlow backend.

官方写法如下:

(x_train, y_train), (x_test, y_test) = cifar10.load_data()

datagen = ImageDataGenerator(
 featurewise_center=True,
 ...
 horizontal_flip=True)

# compute quantities required for featurewise normalization
datagen.fit(x_train)

# 使用fit_generator的【自动】训练方法: fits the model on batches with real-time data augmentation
model.fit_generator(datagen.flow(x_train, y_train, batch_size=32),
   steps_per_epoch=len(x_train), epochs=epochs)

# 自己写range循环的【手动】训练方法
for e in range(epochs):
 print 'Epoch', e
 batches = 0
 for x_batch, y_batch in datagen.flow(x_train, y_train, batch_size=32):
 loss = model.train(x_batch, y_batch)
 batches += 1
 if batches >= len(x_train) / 32:
  # we need to break the loop by hand because
  # the generator loops indefinitely
  break

ImageDataGenerator的参数说明见官网文档。

上面两种训练方法的差异不讨论,我们要关注的是:官方封装的训练集batch生成器是ImageDataGenerator对象的flow方法(或flow_from_directory),该函数返回一个和python定义相似的generator。在它前一步,数据变换是ImageDataGenerator对象的fit方法。

random_crop并未在ImageDataGenerator中内置,但参数中给了一个preprocessing_function,我们可以利用它自定义my_random_crop函数,像下面这样写:

def my_random_crop(image):
 random_arr = numpy.random.randint(img_sz-crop_sz+1, size=2)
 y = int(random_arr[0])
 x = int(random_arr[1])
 h = img_crop
 w = img_crop
 image_crop = image[y:y+h, x:x+w, :]
 return image_crop

datagen = ImageDataGenerator(
 featurewise_center=False,
 ···
 preprocessing_function=my_random_crop)

datagen.fit(x_train)

fit方法调用时将预设的变换应用到x_train的每张图上,包括图像crop,因为是单张依次处理,每张图的crop位置随机。

在训练数据(x=image, y=class_label)时这样写已满足要求;

但在(x=image, y=image_mask)时该方法就不成立了。图像单张处理的缘故,一对(image, image_mask)分别crop的位置无法保持一致。

虽然官网也给出了同时变换image和mask的写法,但它提出的方案能保证二者内置函数的变换一致,自定义函数的random变量仍是随机的。

fit_generator

既然ImageDataGenerator和flow方法不能满足我们的random_crop预处理要求,就在fit_generator函数处想方法修改。

先看它的定义:

def fit_generator(self, generator, samples_per_epoch, nb_epoch,
   verbose=1, callbacks=[],
   validation_data=None, nb_val_samples=None,
   class_weight=None, max_q_size=10, **kwargs):

第一个参数generator,可以传入一个方法,也可以直接传入数据集。前面的 datagen.flow() 即是Keras封装的批量数据传入方法。

显然,我们可以自定义。

def generate_batch_data_random(x, y, batch_size):
 """分批取batch数据加载到显存"""
 total_num = len(x)
 batches = total_num // batch_size
 while (True):
 i = randint(0, batches)
 x_batch = x[i*batch_size:(i+1)*batch_size]
 y_batch = y[i*batch_size:(i+1)*batch_size]
 random_arr = numpy.random.randint(img_sz-crop_sz+1, size=2)
 y_pos = int(random_arr[0])
 x_pos = int(random_arr[1])
 x_crop = x_batch[:, y_pos:y_pos+crop_sz, x_pos:x_pos+crop_sz, :]
 y_crop = y_batch[:, y_pos:y_pos+crop_sz, x_pos:x_pos+crop_sz, :]
 yield (x_crop, y_crop)

这样写就符合我们同组image和mask位置一致的random_crop要求。

注意:

由于没有使用ImageDataGenerator内置的数据变换方法,数据扩充则也需要自定义;由于没有使用flow(…, shuffle=True,)方法,每个epoch的数据打乱需要自定义。

generator自定义时要写成死循环,因为在每个epoch内,generate_batch_data_random是不会重复调用的。

补充知识:tensorflow中的随机裁剪函数random_crop

tf.random_crop是tensorflow中的随机裁剪函数,可以用来裁剪图片。我采用如下图片进行随机裁剪,裁剪大小为原图的一半。

Keras 在fit_generator训练方式中加入图像random_crop操作

如下是实验代码

import tensorflow as tf
import matplotlib.image as img
import matplotlib.pyplot as plt
sess = tf.InteractiveSession()
image = img.imread('D:/Documents/Pictures/logo3.jpg')

reshaped_image = tf.cast(image,tf.float32)
size = tf.cast(tf.shape(reshaped_image).eval(),tf.int32)
height = sess.run(size[0]//2)
width = sess.run(size[1]//2)
distorted_image = tf.random_crop(reshaped_image,[height,width,3])
print(tf.shape(reshaped_image).eval())
print(tf.shape(distorted_image).eval())

fig = plt.figure()
fig1 = plt.figure()
ax = fig.add_subplot(111)
ax1 = fig1.add_subplot(111)
ax.imshow(sess.run(tf.cast(reshaped_image,tf.uint8)))
ax1.imshow(sess.run(tf.cast(distorted_image,tf.uint8)))
plt.show()

如下是随机实验两次的结果

Keras 在fit_generator训练方式中加入图像random_crop操作

Keras 在fit_generator训练方式中加入图像random_crop操作

以上这篇Keras 在fit_generator训练方式中加入图像random_crop操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python设计模式编程中Adapter适配器模式的使用实例
Mar 02 Python
Python urls.py的三种配置写法实例详解
Apr 28 Python
Python基于回溯法解决01背包问题实例
Dec 06 Python
Python实现ping指定IP的示例
Jun 04 Python
opencv python 2D直方图的示例代码
Jul 20 Python
python批量从es取数据的方法(文档数超过10000)
Dec 27 Python
用Python中的turtle模块画图两只小羊方法
Apr 09 Python
python字符串和常用数据结构知识总结
May 21 Python
pyinstaller打包多个py文件和去除cmd黑框的方法
Jun 21 Python
python可视化实现KNN算法
Oct 16 Python
Pytorch实现基于CharRNN的文本分类与生成示例
Jan 08 Python
Python3使用 GitLab API 进行批量合并分支
Oct 15 Python
keras的三种模型实现与区别说明
Jul 03 #Python
Keras中 ImageDataGenerator函数的参数用法
Jul 03 #Python
python程序如何进行保存
Jul 03 #Python
keras的ImageDataGenerator和flow()的用法说明
Jul 03 #Python
python如何安装下载后的模块
Jul 03 #Python
python中id函数运行方式
Jul 03 #Python
Keras 数据增强ImageDataGenerator多输入多输出实例
Jul 03 #Python
You might like
PHP网站提速三大“软”招
2006/10/09 PHP
20个PHP常用类库小结
2011/09/11 PHP
Ubuntu server 11.04安装memcache及php使用memcache来存储session的方法
2016/05/31 PHP
PHP实现数组array转换成xml的方法
2016/07/19 PHP
用 JSON 处理缓存
2007/04/27 Javascript
浅谈JavaScript编程语言的编码规范
2011/10/21 Javascript
深入解析contentWindow, contentDocument
2013/07/04 Javascript
JS判断不能为空实例代码
2013/11/26 Javascript
Javascript 拖拽的一些简单的应用(逐行分析代码,让你轻松了拖拽的原理)
2015/01/23 Javascript
javascript中利用柯里化函数实现bind方法
2016/04/29 Javascript
vue-content-loader内容加载器的使用方法
2018/08/05 Javascript
JavaScript闭包与作用域链实例分析
2019/01/21 Javascript
javascript实现简易数码时钟
2020/03/30 Javascript
python自然语言编码转换模块codecs介绍
2015/04/08 Python
Python类的动态修改的实例方法
2017/03/24 Python
Python爬虫框架scrapy实现downloader_middleware设置proxy代理功能示例
2018/08/04 Python
Python reduce函数作用及实例解析
2020/05/08 Python
python和php哪个容易学
2020/06/19 Python
Python如何爬取51cto数据并存入MySQL
2020/08/25 Python
深入理解Python变量的数据类型和存储
2021/02/01 Python
Python爬虫+Tkinter制作一个翻译软件的示例
2021/02/20 Python
HTML5 Web存储方式的localStorage和sessionStorage进行数据本地存储案例应用
2012/12/09 HTML / CSS
Html5 Canvas动画基础碰撞检测的实现
2018/12/06 HTML / CSS
说一下Linux下有关用户和组管理的命令
2016/01/04 面试题
自学考试自我鉴定范文
2013/09/26 职场文书
大学生自我评价范文分享
2014/02/21 职场文书
优秀的应届生自荐信
2014/05/23 职场文书
教师一帮一活动总结
2014/07/08 职场文书
全国优秀教师事迹材料
2014/08/26 职场文书
永不妥协观后感
2015/06/10 职场文书
开学第一周值周总结
2015/07/16 职场文书
西部计划志愿者工作总结
2015/08/11 职场文书
小学体育跳绳课教学反思
2016/02/16 职场文书
MySQL中几种插入和批量语句实例详解
2021/09/14 MySQL
Python3的进程和线程你了解吗
2022/03/16 Python
《异世界四重奏》剧场版6月10日上映 PV视觉图原创角色发表
2022/03/20 日漫