Python抓新型冠状病毒肺炎疫情数据并绘制全国疫情分布的代码实例


Posted in Python onFebruary 05, 2020

运行结果(2020-2-4日数据)

Python抓新型冠状病毒肺炎疫情数据并绘制全国疫情分布的代码实例

Python抓新型冠状病毒肺炎疫情数据并绘制全国疫情分布的代码实例

数据来源

news.qq.com/zt2020/page/feiyan.htm

Python抓新型冠状病毒肺炎疫情数据并绘制全国疫情分布的代码实例

抓包分析

Python抓新型冠状病毒肺炎疫情数据并绘制全国疫情分布的代码实例

Python抓新型冠状病毒肺炎疫情数据并绘制全国疫情分布的代码实例

日报数据格式

"chinaDayList": [{
		"date": "01.13",
		"confirm": "41",
		"suspect": "0",
		"dead": "1",
		"heal": "0"
	}, {
		"date": "01.14",
		"confirm": "41",
		"suspect": "0",
		"dead": "1",
		"heal": "0"
	}, {
		"date": "01.15",
		"confirm": "41",
		"suspect": "0",
		"dead": "2",
		"heal": "5"
	}, {
	。。。。。。

全国各地疫情数据格式

"lastUpdateTime": "2020-02-04 12:43:19",
	"areaTree": [{
		"name": "中国",
		"children": [{
			"name": "湖北",
			"children": [{
				"name": "武汉",
				"total": {
					"confirm": 6384,
					"suspect": 0,
					"dead": 313,
					"heal": 303
				},
				"today": {
					"confirm": 1242,
					"suspect": 0,
					"dead": 48,
					"heal": 79
				}
			}, {
				"name": "黄冈",
				"total": {
					"confirm": 1422,
					"suspect": 0,
					"dead": 19,
					"heal": 36
				},
				"today": {
					"confirm": 176,
					"suspect": 0,
					"dead": 2,
					"heal": 9
				}
			}, {
			。。。。。。

地图数据

github.com/dongli/china-shapefiles

代码实现

#%%

import time, json, requests
from datetime import datetime
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from matplotlib.font_manager import FontProperties
from mpl_toolkits.basemap import Basemap
from matplotlib.patches import Polygon
import numpy as np
import jsonpath

plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号

#%%

# 全国疫情地区分布(省级确诊病例)
def catch_cn_disease_dis():
 timestamp = '%d'%int(time.time()*1000)
 url_area = ('https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5'
    '&callback=&_=') + timestamp
 world_data = json.loads(requests.get(url=url_area).json()['data'])
 china_data = jsonpath.jsonpath(world_data, 
         expr='$.areaTree[0].children[*]')
 list_province = jsonpath.jsonpath(china_data, expr='$[*].name')
 list_province_confirm = jsonpath.jsonpath(china_data, expr='$[*].total.confirm')
 dic_province_confirm = dict(zip(list_province, list_province_confirm)) 
 return dic_province_confirm

area_data = catch_cn_disease_dis()
print(area_data)

#%%

# 抓取全国疫情按日期分布
'''
数据源:
"chinaDayList": [{
		"date": "01.13",
		"confirm": "41",
		"suspect": "0",
		"dead": "1",
		"heal": "0"
	}, {
		"date": "01.14",
		"confirm": "41",
		"suspect": "0",
		"dead": "1",
		"heal": "0"
	}
'''
def catch_cn_daily_dis():
 timestamp = '%d'%int(time.time()*1000)
 url_area = ('https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5'
    '&callback=&_=') + timestamp
 world_data = json.loads(requests.get(url=url_area).json()['data'])
 china_daily_data = jsonpath.jsonpath(world_data, 
         expr='$.chinaDayList[*]')

 # 其实没必要单独用list存储,json可读性已经很好了;这里这样写仅是为了少该点老版本的代码  
 list_dates = list() # 日期
 list_confirms = list() # 确诊
 list_suspects = list() # 疑似
 list_deads = list() # 死亡
 list_heals = list() # 治愈  
 for item in china_daily_data:
  month, day = item['date'].split('.')
  list_dates.append(datetime.strptime('2020-%s-%s'%(month, day), '%Y-%m-%d'))
  list_confirms.append(int(item['confirm']))
  list_suspects.append(int(item['suspect']))
  list_deads.append(int(item['dead']))
  list_heals.append(int(item['heal']))  
 return list_dates, list_confirms, list_suspects, list_deads, list_heals  

list_date, list_confirm, list_suspect, list_dead, list_heal = catch_cn_daily_dis() 
print(list_date)
 

#%%

# 绘制每日确诊和死亡数据
def plot_cn_daily():
 # list_date, list_confirm, list_suspect, list_dead, list_heal = catch_cn_daily_dis() 
 
 plt.figure('novel coronavirus', facecolor='#f4f4f4', figsize=(10, 8))
 plt.title('全国新型冠状病毒疫情曲线', fontsize=20)
 print('日期元素数:', len(list_date), "\n确诊元素数:", len(list_confirm))
 plt.plot(list_date, list_confirm, label='确诊')
 plt.plot(list_date, list_suspect, label='疑似')
 plt.plot(list_date, list_dead, label='死亡')
 plt.plot(list_date, list_heal, label='治愈')
 xaxis = plt.gca().xaxis 
 # x轴刻度为1天
 xaxis.set_major_locator(matplotlib.dates.DayLocator(bymonthday=None, interval=1, tz=None))
 xaxis.set_major_formatter(mdates.DateFormatter('%m月%d日'))
 plt.gcf().autofmt_xdate() # 优化标注(自动倾斜)
 plt.grid(linestyle=':') # 显示网格
 plt.xlabel('日期',fontsize=16)
 plt.ylabel('人数',fontsize=16)
 plt.legend(loc='best')
 
plot_cn_daily()

#%%

# 绘制全国省级行政区域确诊分布图
count_iter = 0
def plot_cn_disease_dis():
 # area_data = catch_area_distribution()
 font = FontProperties(fname='res/coure.fon', size=14)
 
 # 经纬度范围
 lat_min = 10 # 纬度
 lat_max = 60
 lon_min = 70 # 经度
 lon_max = 140
  
 # 标签颜色和文本 
 legend_handles = [
    matplotlib.patches.Patch(color='#7FFFAA', alpha=1, linewidth=0),
    matplotlib.patches.Patch(color='#ffaa85', alpha=1, linewidth=0),
    matplotlib.patches.Patch(color='#ff7b69', alpha=1, linewidth=0),
    matplotlib.patches.Patch(color='#bf2121', alpha=1, linewidth=0),
    matplotlib.patches.Patch(color='#7f1818', alpha=1, linewidth=0),
 ]
 legend_labels = ['0人', '1-10人', '11-100人', '101-1000人', '>1000人']

 fig = plt.figure(facecolor='#f4f4f4', figsize=(10, 8)) 
 # 新建区域
 axes = fig.add_axes((0.1, 0.1, 0.8, 0.8)) # left, bottom, width, height, figure的百分比,从figure 10%的位置开始绘制, 宽高是figure的80%
 axes.set_title('全国新型冠状病毒疫情地图(确诊)', fontsize=20) # fontproperties=font 设置失败 
 # bbox_to_anchor(num1, num2), num1用于控制legend的左右移动,值越大越向右边移动,num2用于控制legend的上下移动,值越大,越向上移动。
 axes.legend(legend_handles, legend_labels, bbox_to_anchor=(0.5, -0.11), loc='lower center', ncol=5) # prop=font
 
 china_map = Basemap(llcrnrlon=lon_min, urcrnrlon=lon_max, llcrnrlat=lat_min, urcrnrlat=lat_max, resolution='l', ax=axes)
 # labels=[True,False,False,False] 分别代表 [left,right,top,bottom]
 china_map.drawparallels(np.arange(lat_min,lat_max,10), labels=[1,0,0,0]) # 画经度线
 china_map.drawmeridians(np.arange(lon_min,lon_max,10), labels=[0,0,0,1]) # 画纬度线
 china_map.drawcoastlines(color='black') # 洲际线
 china_map.drawcountries(color='red') # 国界线
 china_map.drawmapboundary(fill_color = 'aqua')
 # 画中国国内省界和九段线
 china_map.readshapefile('res/china-shapefiles-master/china', 'province', drawbounds=True)
 china_map.readshapefile('res/china-shapefiles-master/china_nine_dotted_line', 'section', drawbounds=True)
 
 global count_iter
 count_iter = 0
 
 # 内外循环不能对调,地图中每个省的数据有多条(绘制每一个shape,可以去查一下第一条“台湾省”的数据)
 for info, shape in zip(china_map.province_info, china_map.province):
  pname = info['OWNER'].strip('\x00')
  fcname = info['FCNAME'].strip('\x00')
  if pname != fcname: # 不绘制海岛
   continue
  is_reported = False # 西藏没有疫情,数据源就不取不到其数据 
  for prov_name in area_data.keys():    
   count_iter += 1
   if prov_name in pname:
    is_reported = True
    if area_data[prov_name] == 0:
     color = '#f0f0f0'
    elif area_data[prov_name] <= 10:
     color = '#ffaa85'
    elif area_data[prov_name] <= 100:
     color = '#ff7b69'
    elif area_data[prov_name] <= 1000:
     color = '#bf2121'
    else:
     color = '#7f1818'
    break
   
  if not is_reported:
   color = '#7FFFAA'
   
  poly = Polygon(shape, facecolor=color, edgecolor=color)
  axes.add_patch(poly)
  

plot_cn_disease_dis()
print('迭代次数', count_iter)

以上就是三水点靠木小编整理的全部知识点内容,感谢大家的学习和对三水点靠木的支持。

Python 相关文章推荐
Python实现曲线点抽稀算法的示例
Oct 12 Python
pytorch构建网络模型的4种方法
Apr 13 Python
python用插值法绘制平滑曲线
Feb 19 Python
Python实现将字符串的首字母变为大写,其余都变为小写的方法
Jun 11 Python
Python 随机生成测试数据的模块:faker基本使用方法详解
Apr 09 Python
Android Q之气泡弹窗的实现示例
Jun 23 Python
Python调用百度OCR实现图片文字识别的示例代码
Jul 17 Python
python3中calendar返回某一时间点实例讲解
Nov 18 Python
Python中BeautifulSoup通过查找Id获取元素信息
Dec 07 Python
python 通过exifread读取照片信息
Dec 24 Python
Python3 + Appium + 安卓模拟器实现APP自动化测试并生成测试报告
Jan 27 Python
教你怎么用Python监控愉客行车程
Apr 29 Python
Python实现新型冠状病毒传播模型及预测代码实例
Feb 05 #Python
基于Tensorflow批量数据的输入实现方式
Feb 05 #Python
Python操作注册表详细步骤介绍
Feb 05 #Python
Python类继承和多态原理解析
Feb 05 #Python
Python模块 _winreg操作注册表
Feb 05 #Python
python3操作注册表的方法(Url protocol)
Feb 05 #Python
Python tkinter模版代码实例
Feb 05 #Python
You might like
PHP MYSQL简易交互式站点开发
2016/12/27 PHP
PHP从数组中删除元素的四种方法实例
2017/05/12 PHP
JAVASCRIPT实现的WEB页面跳转以及页面间传值方法
2010/05/13 Javascript
基于JQuery实现的类似购物商城的购物车
2011/12/06 Javascript
js防止表单重复提交的两种方法
2013/09/30 Javascript
jQuery中dequeue()方法用法实例
2014/12/29 Javascript
javascript数据结构与算法之检索算法
2015/04/04 Javascript
javascript倒计时效果实现
2015/11/12 Javascript
jQuery Ajax和getJSON获取后台普通json数据和层级json数据用法分析
2016/06/08 Javascript
JS中的BOM应用
2018/02/02 Javascript
Node.js readline 逐行读取、写入文件内容的示例
2018/03/01 Javascript
js捆绑TypeScript声明文件的方法教程
2018/04/13 Javascript
vuejs前后端数据交互之从后端请求数据的实例
2018/08/11 Javascript
vue-better-scroll 的使用实例代码详解
2018/12/03 Javascript
微信小程序中转义字符的处理方法
2019/03/28 Javascript
浅析vue插槽和作用域插槽的理解
2019/04/22 Javascript
前端路由&amp;webpack基础配置详解
2019/06/10 Javascript
小程序实现图片预览裁剪插件
2019/11/22 Javascript
Express 配置HTML页面访问的实现
2020/11/01 Javascript
python获取元素在数组中索引号的方法
2015/07/15 Python
python开发之for循环操作实例详解
2015/11/12 Python
python微信跳一跳系列之棋子定位颜色识别
2018/02/26 Python
Python简单实现两个任意字符串乘积的方法示例
2018/04/12 Python
详解pandas库pd.read_excel操作读取excel文件参数整理与实例
2019/02/17 Python
在django view中给form传入参数的例子
2019/07/19 Python
python机器学习包mlxtend的安装和配置详解
2019/08/21 Python
Python 异步协程函数原理及实例详解
2019/11/13 Python
解决pycharm安装第三方库失败的问题
2020/05/09 Python
Django CBV模型源码运行流程详解
2020/08/17 Python
仓管岗位职责范本
2014/02/08 职场文书
竞选班委演讲稿
2014/04/28 职场文书
反对形式主义、官僚主义、享乐主义和奢靡之风整改措施
2014/09/17 职场文书
纪检干部个人对照检查材料
2014/09/23 职场文书
2015清明节祭奠英烈寄语大全
2015/03/04 职场文书
MySQL通过binlog恢复数据
2021/05/27 MySQL
教你如何使用Python开发一个钉钉群应答机器人
2021/06/21 Python