Python 25行代码实现的RSA算法详解


Posted in Python onApril 10, 2018

本文实例讲述了Python 25行代码实现的RSA算法。分享给大家供大家参考,具体如下:

网络上很多关于RSA算法的原理介绍,但是翻来翻去就是没有一个靠谱的算法实现,即使有代码介绍,也都是直接调用JDK或者Python代码包中的API实现,或者即使有代码也都写得特别烂。无形中让人感觉RSA加密算法竟然这么高深,然后就看不下去了。还有我发现对于“大整数的幂次乘方取模”竟然采用直接计算的幂次的值,再取模,类似于(2 ^ 1024) ^ (2 ^ 1024),这样的计算就直接去计算了,我不知道各位博主有没有运行他们的代码???知道这个数字有多大吗?这么说吧,把全宇宙中的物质都做成硬盘都放不下,更何况你的512内存的电脑。所以我说他们的代码只可远观而不可亵玩已。

于是我用了2天时间,没有去参考网上的代码重新开始把RSA算法的代码完全实现了一遍以后发现代码竟然这么少,25行就全部搞定。为了方便整数的计算,我使用了Python语言。为什么用Python?因为Python在数值计算上比较直观,而Java语言需要用到BigInteger类,数值的计算都是用方法调用,所以使用起来比较麻烦。如果有同学对我得代码感兴趣的话,先二话不说,不管3X7=22,把代码粘贴进pydev中运行一遍,是驴是马拉出来溜溜。看不懂可以私信我,我就把代码具体讲讲,如果本文章没有人感兴趣,我就不做讲解了。

RSA算法的步骤主要有以下几个步骤:

①、选择 p、q两个超级大的质数
②、令n = p * q。取 φ(n) =(p-1) * (q-1)。
③、取 e ∈ 1 < e < φ(n) ,( n , e )为公钥对
④、令 ed mod φ(n) = 1,取得d,( n , d ) 为私钥对。 利用扩展欧几里的算法进行计算。
⑤、销毁 p、q。密文 = 明文 ^ e mod n , 明文 = 密文 ^ d mod n。利用蒙哥马利方法进行计算

代码主要涉及到三个Python可执行文件:计算最大公约数、大整数幂取模算法、公钥私钥生成及加解密。这三个文件构成了RSA算法的核心。

前方高能,我要开始装逼了。看不懂的童鞋请绕道,先去看看理论,具体内容如下:

1. 计算最大公约数
2. 超大整数的超大整数次幂取超大整数模算法(好拗口,哈哈,不拗口一点就显示不出这个算法的超级牛逼之处)
3. 公钥私钥生成

1、计算最大公约数与扩展欧几里得算法

gcd.py文件,gcd方法用来计算两个整数的最大公约数。ext_gcd是扩展欧几里得方法的计算公式。

# -*- coding: utf-8 -*-
# 求两个数字的最大公约数(欧几里得算法)
def gcd(a, b):
  if b == 0:
    return a
  else:
    return gcd(b, a % b)
'''
扩展欧几里的算法
计算 ax + by = 1中的x与y的整数解(a与b互质)
'''
def ext_gcd(a, b):
  if b == 0:
    x1 = 1
    y1 = 0
    x = x1
    y = y1
    r = a
    return r, x, y
  else:
    r, x1, y1 = ext_gcd(b, a % b)
    x = y1
    y = x1 - a / b * y1
    return r, x, y

2、大整数幂取模算法

exponentiation.py文件,主要用于计算超大整数超大次幂然后对超大的整数取模。我在网上查询到这个算法叫做“蒙哥马利算法”。

# -*- coding: utf-8 -*-
'''
超大整数超大次幂然后对超大的整数取模
(base ^ exponent) mod n
'''
def exp_mode(base, exponent, n):
  bin_array = bin(exponent)[2:][::-1]
  r = len(bin_array)
  base_array = []
  pre_base = base
  base_array.append(pre_base)
  for _ in range(r - 1):
    next_base = (pre_base * pre_base) % n
    base_array.append(next_base)
    pre_base = next_base
  a_w_b = __multi(base_array, bin_array)
  return a_w_b % n
def __multi(array, bin_array):
  result = 1
  for index in range(len(array)):
    a = array[index]
    if not int(bin_array[index]):
      continue
    result *= a
  return result

有同学就不服了,说是我为啥不把这个幂次的数字计算出来,再取模。我说这样做,理论上是对的,但是实际上行不通。因为:一个2048位的数字的2048位次的幂,计算出来了以后,这个数字很可能把全宇宙的物质都做成硬盘也放不下。不懂的童鞋请私信我。所以需要用“蒙哥马利算法”进行优化。

3、公钥私钥生成

rsa.py,生成公钥、私钥、并对信息加密解密。

# -*- coding: utf-8 -*-
from gcd import ext_gcd
from exponentiation import exp_mode
# 生成公钥私钥,p、q为两个超大质数
def gen_key(p, q):
  n = p * q
  fy = (p - 1) * (q - 1)   # 计算与n互质的整数个数 欧拉函数
  e = 3889          # 选取e  一般选取65537
  # generate d
  a = e
  b = fy
  r, x, y = ext_gcd(a, b)
  print x  # 计算出的x不能是负数,如果是负数,说明p、q、e选取失败,一般情况下e选取65537
  d = x
  # 返回:  公钥   私钥
  return  (n, e), (n, d)
# 加密 m是被加密的信息 加密成为c
def encrypt(m, pubkey):
  n = pubkey[0]
  e = pubkey[1]
  c = exp_mode(m, e, n)
  return c
# 解密 c是密文,解密为明文m
def decrypt(c, selfkey):
  n = selfkey[0]
  d = selfkey[1]
  m = exp_mode(c, d, n)
  return m
if __name__ == "__main__":
  '''公钥私钥中用到的两个大质数p,q'''
  p = 106697219132480173106064317148705638676529121742557567770857687729397446898790451577487723991083173010242416863238099716044775658681981821407922722052778958942891831033512463262741053961681512908218003840408526915629689432111480588966800949428079015682624591636010678691927285321708935076221951173426894836169
  q = 144819424465842307806353672547344125290716753535239658417883828941232509622838692761917211806963011168822281666033695157426515864265527046213326145174398018859056439431422867957079149967592078894410082695714160599647180947207504108618794637872261572262805565517756922288320779308895819726074229154002310375209
  '''生成公钥私钥'''
  pubkey, selfkey = gen_key(p, q)
  '''需要被加密的信息转化成数字,长度小于秘钥n的长度,如果信息长度大于n的长度,那么分段进行加密,分段解密即可。'''
  m = 1356205320457610288745198967657644166379972189839804389074591563666634066646564410685955217825048626066190866536592405966964024022236587593447122392540038493893121248948780525117822889230574978651418075403357439692743398250207060920929117606033490559159560987768768324823011579283223392964454439904542675637683985296529882973798752471233683249209762843835985174607047556306705224118165162905676610067022517682197138138621344578050034245933990790845007906416093198845798901781830868021761765904777531676765131379495584915533823288125255520904108500256867069512326595285549579378834222350197662163243932424184772115345
  '''信息加密'''
  c = encrypt(m, pubkey)
  print c
  '''信息解密'''
  d = decrypt(c, selfkey)
  print d

代码就是这么简单,RSA算法就是这么任性。代码去除掉没用的注释或者引用,总长度不会超过25行,有疑问的我们掰扯掰扯。

实测:秘钥长度在2048位的时候,我的thinkpad笔记本T440上面、python2.7环境的运行时间是4秒,1024位的时候是1秒。说明了RSA加密算法的算法复杂度应该是O(N^2),其中n是秘钥长度。不知道能不能优化到O(NlogN)

Python 相关文章推荐
python ip正则式
May 07 Python
python使用ctypes模块调用windowsapi获取系统版本示例
Apr 17 Python
Python中的闭包总结
Sep 18 Python
分数霸榜! python助你微信跳一跳拿高分
Jan 08 Python
Python中pow()和math.pow()函数用法示例
Feb 11 Python
python print 按逗号或空格分隔的方法
May 02 Python
python 自定义异常和异常捕捉的方法
Oct 18 Python
Python OpenCV实现视频分帧
Jun 01 Python
django 2.2和mysql使用的常见问题
Jul 18 Python
关于windows下Tensorflow和pytorch安装教程
Feb 04 Python
Python 调用 ES、Solr、Phoenix的示例代码
Nov 23 Python
Python读取pdf表格写入excel的方法
Jan 22 Python
使用pandas中的DataFrame数据绘制柱状图的方法
Apr 10 #Python
Python基于socket模块实现UDP通信功能示例
Apr 10 #Python
pandas把dataframe转成Series,改变列中值的类型方法
Apr 10 #Python
在pandas中一次性删除dataframe的多个列方法
Apr 10 #Python
pandas将DataFrame的列变成行索引的方法
Apr 10 #Python
Pandas 对Dataframe结构排序的实现方法
Apr 10 #Python
python DataFrame 修改列的顺序实例
Apr 10 #Python
You might like
将博客园(cnblogs.com)数据导入到wordpress的代码
2013/01/06 PHP
解析centos中Apache、php、mysql 默认安装路径
2013/06/25 PHP
微信公众平台开发实现2048游戏的方法
2015/04/15 PHP
JavaScript:new 一个函数和直接调用函数的区别分析
2013/07/10 Javascript
如何正确使用javascript 来进行我们的程序开发
2014/06/23 Javascript
JavaScript中的slice()方法使用详解
2015/06/06 Javascript
JQuery复制DOM节点的方法
2015/06/11 Javascript
利用Plupload.js解决大文件上传问题, 带进度条和背景遮罩层
2017/03/15 Javascript
Vue实现百度下拉提示搜索功能
2017/06/21 Javascript
bootstrap多层模态框滚动条消失的问题
2017/07/21 Javascript
Vue.js用法详解
2017/11/13 Javascript
深入理解requireJS-实现一个简单的模块加载器
2018/01/15 Javascript
详解Vue中watch的详细用法
2018/11/28 Javascript
vue实现鼠标移入移出事件代码实例
2019/03/27 Javascript
Vue开发之封装上传文件组件与用法示例
2019/04/25 Javascript
微信小程序实现搜索指定景点周边美食、酒店
2019/05/18 Javascript
使用node.JS中的url模块解析URL信息
2020/02/06 Javascript
解决vue-cli@3.xx安装不成功的问题及搭建ts-vue项目
2020/02/09 Javascript
jQuery+ThinkPHP实现图片上传
2020/07/23 jQuery
python通过socket查询whois的方法
2015/07/18 Python
Python+selenium 获取浏览器窗口坐标、句柄的方法
2018/10/14 Python
利用nohup来开启python文件的方法
2019/01/14 Python
ipython和python区别详解
2019/06/26 Python
Django ModelForm组件使用方法详解
2019/07/23 Python
Pycharm导入anaconda环境的教程图解
2020/07/31 Python
墨西哥网上购物:Linio墨西哥
2016/10/20 全球购物
联想英国官网:Lenovo英国
2019/07/17 全球购物
Bose英国官方网站:美国知名音响品牌
2020/01/26 全球购物
语文教学感言
2014/02/06 职场文书
学习经验演讲稿
2014/05/10 职场文书
爱的承诺书
2015/01/20 职场文书
百年孤独读书笔记
2015/06/29 职场文书
解决tk mapper 通用mapper的bug问题
2021/06/16 Java/Android
Element实现动态表格的示例代码
2021/08/02 Javascript
Mysql关于数据库是否应该使用外键约束详解说明
2021/10/24 MySQL
oracle delete误删除表数据后如何恢复
2022/06/28 Oracle