Python科学画图代码分享


Posted in Python onNovember 29, 2017

Python画图主要用到matplotlib这个库。Matplotlib 是一个 Python 的 2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形。

这里有一本电子书供大家参考:《Python图表绘制:matplotlib绘图库入门

具体来说是pylab和pyplot这两个子库。这两个库可以满足基本的画图需求,而条形图,散点图等特殊图,下面再单独具体介绍。

首先给出pylab神器镇文:pylab.rcParams.update(params)。这个函数几乎可以调节图的一切属性,包括但不限于:坐标范围,axes标签字号大小,xtick,ytick标签字号,图线宽,legend字号等。

具体参数参看官方文档:http://matplotlib.org/users/customizing.html

首先给出一个Python3画图的例子。

import matplotlib.pyplot as plt
import matplotlib.pylab as pylab
import scipy.io
import numpy as np
params={
  'axes.labelsize': '35',    
  'xtick.labelsize':'27',
  'ytick.labelsize':'27',
  'lines.linewidth':2 ,
  'legend.fontsize': '27',
  'figure.figsize'  : '12, 9'  # set figure size
}
pylab.rcParams.update(params)      #set figure parameter
#line_styles=['ro-','b^-','gs-','ro--','b^--','gs--'] #set line style
    
#We give the coordinate date directly to give an example.
x1 = [-20,-15,-10,-5,0,0,5,10,15,20]
y1 = [0,0.04,0.1,0.21,0.39,0.74,0.78,0.80,0.82,0.85]
y2 = [0,0.014,0.03,0.16,0.37,0.78,0.81,0.83,0.86,0.92]
y3 = [0,0.001,0.02,0.14,0.34,0.77,0.82,0.85,0.90,0.96]
y4 = [0,0,0.02,0.12,0.32,0.77,0.83,0.87,0.93,0.98]
y5 = [0,0,0.02,0.11,0.32,0.77,0.82,0.90,0.95,1]
 
 
plt.plot(x1,y1,'bo-',label='m=2, p=10%',markersize=20) # in 'bo-', b is blue, o is O marker, - is solid line and so on
plt.plot(x1,y2,'gv-',label='m=4, p=10%',markersize=20)
plt.plot(x1,y3,'ys-',label='m=6, p=10%',markersize=20)
plt.plot(x1,y4,'ch-',label='m=8, p=10%',markersize=20)
plt.plot(x1,y5,'mD-',label='m=10, p=10%',markersize=20)
 
 
fig1 = plt.figure(1)
axes = plt.subplot(111) 
#axes = plt.gca()
axes.set_yticks([0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0])
axes.grid(True) # add grid
 
plt.legend(loc="lower right") #set legend location
plt.ylabel('Percentage')  # set ystick label
plt.xlabel('Difference') # set xstck label
 
plt.savefig('D:\\commonNeighbors_CDF_snapshots.eps',dpi = 1000,bbox_inches='tight')
plt.show()

显示效果如下:

Python科学画图代码分享

代码没什么好说的,这里只说一下plt.subplot(111)这个函数。

plt.subplot(111)和plt.subplot(1,1,1)是等价的。意思是将区域分成1行1列,当前画的是第一个图(排序由行至列)。

plt.subplot(211)意思就是将区域分成2行1列,当前画的是第一个图(第一行,第一列)。以此类推,只要不超过10,逗号就可省去。

python画条形图。代码如下。

import scipy.io
import numpy as np
import matplotlib.pylab as pylab
import matplotlib.pyplot as plt
import matplotlib.ticker as mtick
params={
  'axes.labelsize': '35',
  'xtick.labelsize':'27',
  'ytick.labelsize':'27',
  'lines.linewidth':2 ,
  'legend.fontsize': '27',
  'figure.figsize'  : '24, 9'
}
pylab.rcParams.update(params)


y1 = [9.79,7.25,7.24,4.78,4.20]
y2 = [5.88,4.55,4.25,3.78,3.92]
y3 = [4.69,4.04,3.84,3.85,4.0]
y4 = [4.45,3.96,3.82,3.80,3.79]
y5 = [3.82,3.89,3.89,3.78,3.77]

ind = np.arange(5)        # the x locations for the groups
width = 0.15
plt.bar(ind,y1,width,color = 'blue',label = 'm=2') 
plt.bar(ind+width,y2,width,color = 'g',label = 'm=4') # ind+width adjusts the left start location of the bar.
plt.bar(ind+2*width,y3,width,color = 'c',label = 'm=6')
plt.bar(ind+3*width,y4,width,color = 'r',label = 'm=8')
plt.bar(ind+4*width,y5,width,color = 'm',label = 'm=10')
plt.xticks(np.arange(5) + 2.5*width, ('10%','15%','20%','25%','30%'))

plt.xlabel('Sample percentage')
plt.ylabel('Error rate')

fmt = '%.0f%%' # Format you want the ticks, e.g. '40%'
xticks = mtick.FormatStrFormatter(fmt)  
# Set the formatter
axes = plt.gca()  # get current axes
axes.yaxis.set_major_formatter(xticks) # set % format to ystick.
axes.grid(True)
plt.legend(loc="upper right")
plt.savefig('D:\\errorRate.eps', format='eps',dpi = 1000,bbox_inches='tight')

plt.show()

结果如下:

Python科学画图代码分享

画散点图,主要是scatter这个函数,其他类似。

画网络图,要用到networkx这个库,下面给出一个实例:

import networkx as nx
import pylab as plt
g = nx.Graph()
g.add_edge(1,2,weight = 4)
g.add_edge(1,3,weight = 7)
g.add_edge(1,4,weight = 8)
g.add_edge(1,5,weight = 3)
g.add_edge(1,9,weight = 3)
 
g.add_edge(1,6,weight = 6)
g.add_edge(6,7,weight = 7)
g.add_edge(6,8,weight = 7) 
 
g.add_edge(6,9,weight = 6)
g.add_edge(9,10,weight = 7)
g.add_edge(9,11,weight = 6)

fixed_pos = {1:(1,1),2:(0.7,2.2),3:(0,1.8),4:(1.6,2.3),5:(2,0.8),6:(-0.6,-0.6),7:(-1.3,0.8), 8:(-1.5,-1), 9:(0.5,-1.5), 10:(1.7,-0.8), 11:(1.5,-2.3)} #set fixed layout location

#pos=nx.spring_layout(g) # or you can use other layout set in the module
nx.draw_networkx_nodes(g,pos = fixed_pos,nodelist=[1,2,3,4,5],
node_color = 'g',node_size = 600)
nx.draw_networkx_edges(g,pos = fixed_pos,edgelist=[(1,2),(1,3),(1,4),(1,5),(1,9)],edge_color='g',width = [4.0,4.0,4.0,4.0,4.0],label = [1,2,3,4,5],node_size = 600)

nx.draw_networkx_nodes(g,pos = fixed_pos,nodelist=[6,7,8],
node_color = 'r',node_size = 600)
nx.draw_networkx_edges(g,pos = fixed_pos,edgelist=[(6,7),(6,8),(1,6)],width = [4.0,4.0,4.0],edge_color='r',node_size = 600)
 
nx.draw_networkx_nodes(g,pos = fixed_pos,nodelist=[9,10,11],
node_color = 'b',node_size = 600)
nx.draw_networkx_edges(g,pos = fixed_pos,edgelist=[(6,9),(9,10),(9,11)],width = [4.0,4.0,4.0],edge_color='b',node_size = 600)

plt.text(fixed_pos[1][0],fixed_pos[1][1]+0.2, s = '1',fontsize = 40)
plt.text(fixed_pos[2][0],fixed_pos[2][1]+0.2, s = '2',fontsize = 40)
plt.text(fixed_pos[3][0],fixed_pos[3][1]+0.2, s = '3',fontsize = 40)
plt.text(fixed_pos[4][0],fixed_pos[4][1]+0.2, s = '4',fontsize = 40)
plt.text(fixed_pos[5][0],fixed_pos[5][1]+0.2, s = '5',fontsize = 40)
plt.text(fixed_pos[6][0],fixed_pos[6][1]+0.2, s = '6',fontsize = 40)
plt.text(fixed_pos[7][0],fixed_pos[7][1]+0.2, s = '7',fontsize = 40)
plt.text(fixed_pos[8][0],fixed_pos[8][1]+0.2, s = '8',fontsize = 40)
plt.text(fixed_pos[9][0],fixed_pos[9][1]+0.2, s = '9',fontsize = 40)
plt.text(fixed_pos[10][0],fixed_pos[10][1]+0.2, s = '10',fontsize = 40)
plt.text(fixed_pos[11][0],fixed_pos[11][1]+0.2, s = '11',fontsize = 40)

plt.show()

结果如下:

Python科学画图代码分享

总结

以上就是本文关于Python科学画图代码分享的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

Python 相关文章推荐
python通过openpyxl生成Excel文件的方法
May 12 Python
Python中几个比较常见的名词解释
Jul 04 Python
python使用opencv进行人脸识别
Apr 07 Python
将Dataframe数据转化为ndarry数据的方法
Jun 28 Python
浅析python的优势和不足之处
Nov 20 Python
Python网页正文转换语音文件的操作方法
Dec 09 Python
Python实现的KMeans聚类算法实例分析
Dec 29 Python
Python中正则表达式的用法总结
Feb 22 Python
python自动循环定时开关机(非重启)测试
Aug 26 Python
python线程定时器Timer实现原理解析
Nov 30 Python
python Scrapy爬虫框架的使用
Jan 21 Python
python中的被动信息搜集
Apr 29 Python
Python中Scrapy爬虫图片处理详解
Nov 29 #Python
Python使用django框架实现多人在线匿名聊天的小程序
Nov 29 #Python
Python实现的计数排序算法示例
Nov 29 #Python
Scrapy框架CrawlSpiders的介绍以及使用详解
Nov 29 #Python
pycharm下打开、执行并调试scrapy爬虫程序的方法
Nov 29 #Python
Python快速排序算法实例分析
Nov 29 #Python
Python3学习urllib的使用方法示例
Nov 29 #Python
You might like
php 图像函数大举例(非原创)
2009/06/20 PHP
php 向访客和爬虫显示不同的内容
2009/11/09 PHP
PHP提示Deprecated: mysql_connect(): The mysql extension is deprecated的解决方法
2014/08/28 PHP
PHP使用PDO、mysqli扩展实现与数据库交互操作详解
2019/07/20 PHP
javascript的onchange事件与jQuery的change()方法比较
2009/09/28 Javascript
jQuery EasyUI API 中文文档 - Tabs标签页/选项卡
2011/10/01 Javascript
获取客户端网卡MAC地址和IP地址实现JS代码
2013/03/17 Javascript
JS 获取浏览器和屏幕宽高等信息的实现思路及代码
2013/07/31 Javascript
jquery中页面Ajax方法$.load的功能使用介绍
2014/10/20 Javascript
PHP结合jQuery实现的评论顶、踩功能
2015/07/22 Javascript
Javascript中的神器——Promise
2017/02/08 Javascript
Javascript实现数组中的元素上下移动
2017/04/28 Javascript
jQuery插件imgAreaSelect基础讲解
2017/05/26 jQuery
javascript 数据存储的常用函数总结
2017/06/01 Javascript
Mongoose实现虚拟字段查询的方法详解
2017/08/15 Javascript
Node中使用ES6语法的基础教程
2018/01/05 Javascript
vue在App.vue文件中监听路由变化刷新页面操作
2020/08/14 Javascript
vue切换菜单取消未完成接口请求的案例
2020/11/13 Javascript
[06:25]DOTA2英雄梦之声_第17期_大地之灵
2014/06/20 DOTA
Python使用os模块和fileinput模块来操作文件目录
2016/01/19 Python
python3.6+django2.0开发一套学员管理系统
2018/03/03 Python
Python实现常见的回文字符串算法
2018/11/14 Python
python中退出多层循环的方法
2018/11/27 Python
Python语言快速上手学习方法
2018/12/14 Python
40个你可能不知道的Python技巧附代码
2020/01/29 Python
Pycharm的Available Packages为空的解决方法
2020/09/18 Python
CSS3中31种选择器使用方法教程
2013/12/05 HTML / CSS
长安大学毕业生自我鉴定
2014/01/17 职场文书
中专毕业生自我鉴定
2014/02/02 职场文书
学生党员的自我评价范文
2014/03/01 职场文书
大学生村官承诺书
2014/03/28 职场文书
爱国演讲稿500字
2014/05/04 职场文书
经济贸易系求职信
2014/08/04 职场文书
小数乘法教学反思
2016/02/22 职场文书
Python集合的基础操作
2021/11/01 Python
Python中的datetime包与time包包和模块详情
2022/02/28 Python