python 解决微分方程的操作(数值解法)


Posted in Python onMay 26, 2021

Python求解微分方程(数值解法)

对于一些微分方程来说,数值解法对于求解具有很好的帮助,因为难以求得其原方程。

比如方程:

python 解决微分方程的操作(数值解法)

但是我们知道了它的初始条件,这对于我们叠代求解很有帮助,也是必须的。

python 解决微分方程的操作(数值解法)

那么现在我们也用Python去解决这一些问题,一般的数值解法有欧拉法、隐式梯形法等,我们也来看看这些算法对叠代的精度有什么区别?

```python
```python
import numpy as np
from scipy.integrate import odeint
from matplotlib import pyplot as plt
import os
#先从odeint函数直接求解微分方程
#创建欧拉法的类
class Euler:
    #构造方法,当创建对象的时候,自动执行的函数
    def __init__(self,h,y0):
        #将对象与对象的属性绑在一起
        self.h = h
        self.y0 = y0
        self.y = y0
        self.n = 1/self.h
        self.x = 0
        self.list = [1]
        #欧拉法用list列表,其x用y叠加储存
        self.list2 = [1]
        self.y1 = y0
        #改进欧拉法用list2列表,其x用y1叠加储存
        self.list3 = [1]
        self.y2 = y0
        #隐式梯形法用list3列表,其x用y2叠加储存
    #欧拉法的算法,算法返回t,x
    def countall(self):
        for i in range(int(self.n)):
            y_dere = -20*self.list[i]
            #欧拉法叠加量y_dere = -20 * x
            y_dere2 = -20*self.list2[i] + 0.5*400*self.h*self.list2[i]
            #改进欧拉法叠加量 y_dere2 = -20*x(k) + 0.5*400*delta_t*x(k)
            y_dere3 = (1-10*self.h)*self.list3[i]/(1+10*self.h)
            #隐式梯形法计算 y_dere3 = (1-10*delta_t)*x(k)/(1+10*delta_t)
            self.y += self.h*y_dere
            self.y1 += self.h*y_dere2
            self.y2 =y_dere3
            self.list.append(float("%.10f" %self.y))
            self.list2.append(float("%.10f"%self.y1))
            self.list3.append(float("%.10f"%self.y2))
        return np.linspace(0,1,int(self.n+1)), self.list,self.list2,self.list3
step = input("请输入你需要求解的步长:")
step = float(step)
work1 = Euler(step,1)
ax1,ay1,ay2,ay3 = work1.countall()
#画图工具plt
plt.figure(1)
plt.subplot(1,3,1)
plt.plot(ax1,ay1,'s-.',MarkerFaceColor = 'g')
plt.xlabel('横坐标t',fontproperties = 'simHei',fontsize =20)
plt.ylabel('纵坐标x',fontproperties = 'simHei',fontsize =20)
plt.title('欧拉法求解微分线性方程步长为'+str(step),fontproperties = 'simHei',fontsize =20)
plt.subplot(1,3,2)
plt.plot(ax1,ay2,'s-.',MarkerFaceColor = 'r')
plt.xlabel('横坐标t',fontproperties = 'simHei',fontsize =20)
plt.ylabel('纵坐标x',fontproperties = 'simHei',fontsize =20)
plt.title('改进欧拉法求解微分线性方程步长为'+str(step),fontproperties = 'simHei',fontsize =20)
plt.subplot(1,3,3)
plt.plot(ax1,ay3,'s-.',MarkerFaceColor = 'b')
plt.xlabel('横坐标t',fontproperties = 'simHei',fontsize =20)
plt.ylabel('纵坐标x',fontproperties = 'simHei',fontsize =20)
plt.title('隐式梯形法求解微分线性方程步长为'+str(step),fontproperties = 'simHei',fontsize =20)
plt.figure(2)
plt.plot(ax1,ay1,ax1,ay2,ax1,ay3,'s-.',MarkerSize = 3)
plt.xlabel('横坐标t',fontproperties = 'simHei',fontsize =20)
plt.ylabel('纵坐标x',fontproperties = 'simHei',fontsize =20)
plt.title('三合一图像步长为'+str(step),fontproperties = 'simHei',fontsize =20)
ax = plt.gca()
ax.legend(('$Eular$','$fixed Eular$','$trapezoid$'),loc = 'lower right',title = 'legend')
plt.show()
os.system("pause")

对于欧拉法,它的叠代方法是:

python 解决微分方程的操作(数值解法)

改进欧拉法的叠代方法:

python 解决微分方程的操作(数值解法)

隐式梯形法:

python 解决微分方程的操作(数值解法)

对于不同的步长,其求解的精度也会有很大的不同,我先放一几张结果图:

python 解决微分方程的操作(数值解法)python 解决微分方程的操作(数值解法)

补充:基于python的微分方程数值解法求解电路模型

安装环境包

安装numpy(用于调节range) 和 matplotlib(用于绘图)

在命令行输入

pip install numpy 
pip install matplotlib

电路模型和微分方程

模型1

无损害,电容电压为5V,电容为0.01F,电感为0.01H的并联谐振电路

电路模型1

python 解决微分方程的操作(数值解法)

微分方程1

python 解决微分方程的操作(数值解法)

模型2

带电阻损耗的电容电压为5V,电容为0.01F,电感为0.01H的的并联谐振

电路模型2

python 解决微分方程的操作(数值解法)

 

 

微分方程2

python 解决微分方程的操作(数值解法)

python代码

模型1

import numpy as np
import matplotlib.pyplot as plt
 
L = 0.01  #电容的值 F
C = 0.01  #电感的值 L
u_0 = 5   #电容的初始电压
u_dot_0 = 0
 
def equition(u,u_dot):#二阶方程
    u_double_dot = -u/(L*C)
    return u_double_dot
 
def draw_plot(time_step,time_scale):#时间步长和范围
    u = u_0
    u_dot = u_dot_0  #初始电压和电压的一阶导数
    time_list = [0] #时间lis
    Votage = [u] #电压list
    plt.figure()
    for time in np.arange(0,time_scale,time_step):#使用欧拉数值计算法 一阶近似
        u_double_dot = equition(u,u_dot) #二阶导数
        u_dot = u_dot + u_double_dot*time_step #一阶导数
        u = u + u_dot*time_step #电压
        time_list.append(time) #结果添加
        Votage.append(u) #结果添加
        print(u)
    plt.plot(time_list,Votage,"b--",linewidth=1) #画图
    plt.show()
    plt.savefig("easyplot.png")
 
if __name__ == '__main__':
    draw_plot(0.0001,1)

模型2

import numpy as np
import matplotlib.pyplot as plt
 
L = 0.01  #电容的值 F
C = 0.01  #电感的值 L
R = 0.1   #电阻值
u_0 = 5   #电容的初始电压
u_dot_0 = 0
 
def equition(u,u_dot):#二阶方程
    u_double_dot =(-R*C*u_dot -u)/(L*C)
    return u_double_dot
 
def draw_plot(time_step,time_scale):#时间步长和范围
    u = u_0
    u_dot = u_dot_0  #初始电压和电压的一阶导数
    time_list = [0] #时间lis
    Votage = [u] #电压list
    plt.figure()
    for time in np.arange(0,time_scale,time_step):#使用欧拉数值计算法 一阶近似
        u_double_dot = equition(u,u_dot) #二阶导数
        u_dot = u_dot + u_double_dot*time_step #一阶导数
        u = u + u_dot*time_step #电压
        time_list.append(time) #结果添加
        Votage.append(u) #结果添加
        print(u)
    plt.plot(time_list,Votage,"b-",linewidth=1) #画图
    plt.show()
    plt.savefig("result.png")
 
if __name__ == '__main__':
    draw_plot(0.0001,1)

数值解结果

模型1

python 解决微分方程的操作(数值解法)

纵轴为电容两端电压,横轴为时间与公式计算一致​​

模型2结果

python 解决微分方程的操作(数值解法)

纵轴

为电容两端电压,横轴为时间标题

最后我们可以根据调节电阻到达不同的状态

python 解决微分方程的操作(数值解法)

R=0.01,欠阻尼

python 解决微分方程的操作(数值解法)

R=1.7,临界阻尼

python 解决微分方程的操作(数值解法)

R=100,过阻尼

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python ORM框架SQLAlchemy学习笔记之安装和简单查询实例
Jun 10 Python
Python Queue模块详解
Nov 30 Python
OpenCV-Python实现轮廓检测实例分析
Jan 05 Python
一些Centos Python 生产环境的部署命令(推荐)
May 07 Python
python 返回列表中某个值的索引方法
Nov 07 Python
Python实现KNN(K-近邻)算法的示例代码
Mar 05 Python
Python中捕获键盘的方式详解
Mar 28 Python
python实现简单银行管理系统
Oct 25 Python
浅谈pytorch 模型 .pt, .pth, .pkl的区别及模型保存方式
May 25 Python
Python特殊属性property原理及使用方法解析
Oct 09 Python
用Python进行栅格数据的分区统计和批量提取
May 27 Python
Python+Selenium实现读取网易邮箱验证码
Mar 13 Python
python 实现体质指数BMI计算
May 26 #Python
Python 如何解决稀疏矩阵运算
Python selenium模拟网页点击爬虫交管12123违章数据
python scipy 稀疏矩阵的使用说明
python中os.path.join()函数实例用法
May 26 #Python
python实现简单的井字棋
May 26 #Python
python 办公自动化——基于pyqt5和openpyxl统计符合要求的名单
You might like
PHP 各种排序算法实现代码
2009/08/20 PHP
PHP写UltraEdit插件脚本实现方法
2011/12/26 PHP
PHP实现批量上传单个文件
2015/12/29 PHP
jQuery结合Json提交数据到Webservice,并接收从Webservice返回的Json数据
2011/02/18 Javascript
javascript获取form里的表单元素的示例代码
2014/02/14 Javascript
jQuery插件Tmpl的简单使用方法
2015/04/27 Javascript
简单实现兼容各大浏览器的js复制内容到剪切板
2015/09/09 Javascript
解决WordPress使用CDN后博文无法评论的错误
2015/12/15 Javascript
JavaScript+html5 canvas绘制的圆弧荡秋千效果完整实例
2016/01/26 Javascript
jQuery实现的导航动画效果(附demo源码)
2016/04/01 Javascript
JavaScript代码实现图片循环滚动效果
2020/03/19 Javascript
总结AngularJS开发者最常犯的十个错误
2016/08/31 Javascript
如何实现json数据可视化详解
2016/11/24 Javascript
jQuery基于排序功能实现上移、下移的方法
2016/11/26 Javascript
详解vee-validate的使用个人小结
2017/06/07 Javascript
Angular2管道Pipe及自定义管道格式数据用法实例分析
2017/11/29 Javascript
vue router嵌套路由在history模式下刷新无法渲染页面问题的解决方法
2018/01/25 Javascript
Javasript设计模式之链式调用详解
2018/04/26 Javascript
小程序实现发表评论功能
2018/07/06 Javascript
小程序云开发之用户注册登录
2019/05/18 Javascript
vue实现微信浏览器左上角返回按钮拦截功能
2020/01/18 Javascript
Js实现粘贴上传图片的原理及示例
2020/12/09 Javascript
[03:03]DOTA2校园争霸赛 济南城市决赛欢乐发奖活动
2013/10/21 DOTA
Python的MongoDB模块PyMongo操作方法集锦
2016/01/05 Python
再谈Python中的字符串与字符编码(推荐)
2016/12/14 Python
Python matplotlib画图与中文设置操作实例分析
2019/04/23 Python
python 利用opencv实现图像网络传输
2020/11/12 Python
有750多个顶级品牌的瑞士时尚在线:ABOUT YOU
2017/01/04 全球购物
三星美国官网:Samsung美国
2017/02/06 全球购物
服装设计专业毕业生推荐信
2013/11/09 职场文书
如何撰写岗位职责
2014/02/01 职场文书
小学语文教学反思
2014/02/10 职场文书
优秀毕业自我鉴定
2014/02/15 职场文书
安全月活动总结
2014/05/05 职场文书
大学生自我评价200字(4篇)
2014/09/17 职场文书
宝塔更新Python及Flask项目的部署
2022/04/11 Python