python实现KNN近邻算法


Posted in Python onDecember 30, 2020

示例:《电影类型分类》

获取数据来源

电影名称 打斗次数 接吻次数 电影类型
California Man 3 104 Romance
He's Not Really into Dudes 8 95 Romance
Beautiful Woman 1 81 Romance
Kevin Longblade 111 15 Action
Roob Slayer 3000 99 2 Action
Amped II 88 10 Action
Unknown 18 90 unknown

数据显示:肉眼判断电影类型unknown是什么

from matplotlib import pyplot as plt
​
# 用来正常显示中文标签
plt.rcParams["font.sans-serif"] = ["SimHei"]
# 电影名称
names = ["California Man", "He's Not Really into Dudes", "Beautiful Woman",
   "Kevin Longblade", "Robo Slayer 3000", "Amped II", "Unknown"]
# 类型标签
labels = ["Romance", "Romance", "Romance", "Action", "Action", "Action", "Unknown"]
colors = ["darkblue", "red", "green"]
colorDict = {label: color for (label, color) in zip(set(labels), colors)}
print(colorDict)
# 打斗次数,接吻次数
X = [3, 8, 1, 111, 99, 88, 18]
Y = [104, 95, 81, 15, 2, 10, 88]
​
plt.title("通过打斗次数和接吻次数判断电影类型", fontsize=18)
plt.xlabel("电影中打斗镜头出现的次数", fontsize=16)
plt.ylabel("电影中接吻镜头出现的次数", fontsize=16)
​
# 绘制数据
for i in range(len(X)):
 # 散点图绘制
 plt.scatter(X[i], Y[i], color=colorDict[labels[i]])
​
# 每个点增加描述信息
for i in range(0, 7):
 plt.text(X[i]+2, Y[i]-1, names[i], fontsize=14)
​
plt.show()

问题分析:根据已知信息分析电影类型unknown是什么

核心思想:

未标记样本的类别由距离其最近的K个邻居的类别决定

距离度量:

一般距离计算使用欧式距离(用勾股定理计算距离),也可以采用曼哈顿距离(水平上和垂直上的距离之和)、余弦值和相似度(这是距离的另一种表达方式)。相比于上述距离,马氏距离更为精确,因为它能考虑很多因素,比如单位,由于在求协方差矩阵逆矩阵的过程中,可能不存在,而且若碰见3维及3维以上,求解过程中极其复杂,故可不使用马氏距离

知识扩展

  • 马氏距离概念:表示数据的协方差距离
  • 方差:数据集中各个点到均值点的距离的平方的平均值
  • 标准差:方差的开方
  • 协方差cov(x, y):E表示均值,D表示方差,x,y表示不同的数据集,xy表示数据集元素对应乘积组成数据集

cov(x, y) = E(xy) - E(x)*E(y)

cov(x, x) = D(x)

cov(x1+x2, y) = cov(x1, y) + cov(x2, y)

cov(ax, by) = abcov(x, y)

  • 协方差矩阵:根据维度组成的矩阵,假设有三个维度,a,b,c

∑ij = [cov(a, a) cov(a, b) cov(a, c) cov(b, a) cov(b,b) cov(b, c) cov(c, a) cov(c, b) cov(c, c)]

算法实现:欧氏距离

编码实现

# 自定义实现 mytest1.py
import numpy as np
​
# 创建数据集
def createDataSet():
 features = np.array([[3, 104], [8, 95], [1, 81], [111, 15],
       [99, 2], [88, 10]])
 labels = ["Romance", "Romance", "Romance", "Action", "Action", "Action"]
 return features, labels
​
def knnClassify(testFeature, trainingSet, labels, k):
 """
 KNN算法实现,采用欧式距离
 :param testFeature: 测试数据集,ndarray类型,一维数组
 :param trainingSet: 训练数据集,ndarray类型,二维数组
 :param labels: 训练集对应标签,ndarray类型,一维数组
 :param k: k值,int类型
 :return: 预测结果,类型与标签中元素一致
 """
 dataSetsize = trainingSet.shape[0]
 """
 构建一个由dataSet[i] - testFeature的新的数据集diffMat
 diffMat中的每个元素都是dataSet中每个特征与testFeature的差值(欧式距离中差)
 """
 testFeatureArray = np.tile(testFeature, (dataSetsize, 1))
 diffMat = testFeatureArray - trainingSet
 # 对每个差值求平方
 sqDiffMat = diffMat ** 2
 # 计算dataSet中每个属性与testFeature的差的平方的和
 sqDistances = sqDiffMat.sum(axis=1)
 # 计算每个feature与testFeature之间的欧式距离
 distances = sqDistances ** 0.5
​
 """
 排序,按照从小到大的顺序记录distances中各个数据的位置
 如distance = [5, 9, 0, 2]
 则sortedStance = [2, 3, 0, 1]
 """
 sortedDistances = distances.argsort()
​
 # 选择距离最小的k个点
 classCount = {}
 for i in range(k):
  voteiLabel = labels[list(sortedDistances).index(i)]
  classCount[voteiLabel] = classCount.get(voteiLabel, 0) + 1
 # 对k个结果进行统计、排序,选取最终结果,将字典按照value值从大到小排序
 sortedclassCount = sorted(classCount.items(), key=lambda x: x[1], reverse=True)
 return sortedclassCount[0][0]
​
testFeature = np.array([100, 200])
features, labels = createDataSet()
res = knnClassify(testFeature, features, labels, 3)
print(res)
# 使用python包实现 mytest2.py
from sklearn.neighbors import KNeighborsClassifier
from .mytest1 import createDataSet
​
features, labels = createDataSet()
k = 5
clf = KNeighborsClassifier(k_neighbors=k)
clf.fit(features, labels)
​
# 样本值
my_sample = [[18, 90]]
res = clf.predict(my_sample)
print(res)

示例:《交友网站匹配效果预测》

数据来源:略

数据显示

import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
​
# 数据加载
def loadDatingData(file):
 datingData = pd.read_table(file, header=None)
 datingData.columns = ["FlightDistance", "PlaytimePreweek", "IcecreamCostPreweek", "label"]
 datingTrainData = np.array(datingData[["FlightDistance", "PlaytimePreweek", "IcecreamCostPreweek"]])
 datingTrainLabel = np.array(datingData["label"])
 return datingData, datingTrainData, datingTrainLabel
​
# 3D图显示数据
def dataView3D(datingTrainData, datingTrainLabel):
 plt.figure(1, figsize=(8, 3))
 plt.subplot(111, projection="3d")
 plt.scatter(np.array([datingTrainData[x][0]
       for x in range(len(datingTrainLabel))
       if datingTrainLabel[x] == "smallDoses"]),
    np.array([datingTrainData[x][1]
       for x in range(len(datingTrainLabel))
       if datingTrainLabel[x] == "smallDoses"]),
    np.array([datingTrainData[x][2]
       for x in range(len(datingTrainLabel))
       if datingTrainLabel[x] == "smallDoses"]), c="red")
 plt.scatter(np.array([datingTrainData[x][0]
       for x in range(len(datingTrainLabel))
       if datingTrainLabel[x] == "didntLike"]),
    np.array([datingTrainData[x][1]
       for x in range(len(datingTrainLabel))
       if datingTrainLabel[x] == "didntLike"]),
    np.array([datingTrainData[x][2]
       for x in range(len(datingTrainLabel))
       if datingTrainLabel[x] == "didntLike"]), c="green")
 plt.scatter(np.array([datingTrainData[x][0]
       for x in range(len(datingTrainLabel))
       if datingTrainLabel[x] == "largeDoses"]),
    np.array([datingTrainData[x][1]
       for x in range(len(datingTrainLabel))
       if datingTrainLabel[x] == "largeDoses"]),
    np.array([datingTrainData[x][2]
       for x in range(len(datingTrainLabel))
       if datingTrainLabel[x] == "largeDoses"]), c="blue")
 plt.xlabel("飞行里程数", fontsize=16)
 plt.ylabel("视频游戏耗时百分比", fontsize=16)
 plt.clabel("冰淇凌消耗", fontsize=16)
 plt.show()
 
datingData, datingTrainData, datingTrainLabel = loadDatingData(FILEPATH1)
datingView3D(datingTrainData, datingTrainLabel)

问题分析:抽取数据集的前10%在数据集的后90%进行测试

编码实现

# 自定义方法实现
import pandas as pd
import numpy as np
​
# 数据加载
def loadDatingData(file):
 datingData = pd.read_table(file, header=None)
 datingData.columns = ["FlightDistance", "PlaytimePreweek", "IcecreamCostPreweek", "label"]
 datingTrainData = np.array(datingData[["FlightDistance", "PlaytimePreweek", "IcecreamCostPreweek"]])
 datingTrainLabel = np.array(datingData["label"])
 return datingData, datingTrainData, datingTrainLabel
​
# 数据归一化
def autoNorm(datingTrainData):
 # 获取数据集每一列的最值
 minValues, maxValues = datingTrainData.min(0), datingTrainData.max(0)
 diffValues = maxValues - minValues
 
 # 定义形状和datingTrainData相似的最小值矩阵和差值矩阵
 m = datingTrainData.shape(0)
 minValuesData = np.tile(minValues, (m, 1))
 diffValuesData = np.tile(diffValues, (m, 1))
 normValuesData = (datingTrainData-minValuesData)/diffValuesData
 return normValuesData
​
# 核心算法实现
def KNNClassifier(testData, trainData, trainLabel, k):
 m = trainData.shape(0)
 testDataArray = np.tile(testData, (m, 1))
 diffDataArray = (testDataArray - trainData) ** 2
 sumDataArray = diffDataArray.sum(axis=1) ** 0.5
 # 对结果进行排序
 sumDataSortedArray = sumDataArray.argsort()
 
 classCount = {}
 for i in range(k):
  labelName = trainLabel[list(sumDataSortedArray).index(i)]
  classCount[labelName] = classCount.get(labelName, 0)+1
 classCount = sorted(classCount.items(), key=lambda x: x[1], reversed=True)
 return classCount[0][0]
 
​
# 数据测试
def datingTest(file):
 datingData, datingTrainData, datingTrainLabel = loadDatingData(file)
 normValuesData = autoNorm(datingTrainData)
 
 
 errorCount = 0
 ratio = 0.10
 total = datingTrainData.shape(0)
 numberTest = int(total * ratio)
 for i in range(numberTest):
  res = KNNClassifier(normValuesData[i], normValuesData[numberTest:m], datingTrainLabel, 5)
  if res != datingTrainLabel[i]:
   errorCount += 1
 print("The total error rate is : {}\n".format(error/float(numberTest)))
​
if __name__ == "__main__":
 FILEPATH = "./datingTestSet1.txt"
 datingTest(FILEPATH)
# python 第三方包实现
import pandas as pd
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
​
if __name__ == "__main__":
 FILEPATH = "./datingTestSet1.txt"
 datingData, datingTrainData, datingTrainLabel = loadDatingData(FILEPATH)
 normValuesData = autoNorm(datingTrainData)
 errorCount = 0
 ratio = 0.10
 total = normValuesData.shape[0]
 numberTest = int(total * ratio)
 
 k = 5
 clf = KNeighborsClassifier(n_neighbors=k)
 clf.fit(normValuesData[numberTest:total], datingTrainLabel[numberTest:total])
 
 for i in range(numberTest):
  res = clf.predict(normValuesData[i].reshape(1, -1))
  if res != datingTrainLabel[i]:
   errorCount += 1
 print("The total error rate is : {}\n".format(errorCount/float(numberTest)))

以上就是python实现KNN近邻算法的详细内容,更多关于python实现KNN近邻算法的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
Python中type的构造函数参数含义说明
Jun 21 Python
Python基于checksum计算文件是否相同的方法
Jul 09 Python
在Python的Django框架中创建和使用模版
Jul 15 Python
python在不同层级目录import模块的方法
Jan 31 Python
Python内置数据结构与操作符的练习题集锦
Jul 01 Python
Python 中的Selenium异常处理实例代码
May 03 Python
python实现PID算法及测试的例子
Aug 08 Python
python实现对列表中的元素进行倒序打印
Nov 23 Python
python实现tail实时查看服务器日志示例
Dec 24 Python
python标识符命名规范原理解析
Jan 10 Python
什么是Python中的顺序表
Jun 02 Python
Python函数__new__及__init__作用及区别解析
Aug 31 Python
python 实现逻辑回归
Dec 30 #Python
Python 随机按键模拟2小时
Dec 30 #Python
Python的scikit-image模块实例讲解
Dec 30 #Python
用Python实现职工信息管理系统
Dec 30 #Python
python实现双人五子棋(终端版)
Dec 30 #Python
pandas 数据类型转换的实现
Dec 29 #Python
python中xlutils库用法浅析
Dec 29 #Python
You might like
PHP定时任务延缓执行的实现
2014/10/08 PHP
php+ajax实现无刷新分页
2015/11/18 PHP
php.ini中date.timezone设置详解
2016/11/20 PHP
php获取微信基础接口凭证Access_token
2018/08/23 PHP
PHP获取当前系统时间的方法小结
2018/10/03 PHP
解决php扩展安装不生效问题
2019/10/25 PHP
用js实现计算代码行数的简单方法附代码
2007/08/13 Javascript
Javascript面向对象编程(二) 构造函数的继承
2011/08/28 Javascript
浅谈JavaScript中的字符编码转换问题
2015/07/07 Javascript
jQuery实现的自动加载页面功能示例
2016/09/04 Javascript
JavaScript 计算笛卡尔积实例详解
2016/12/02 Javascript
原生js实现鼠标跟随效果
2017/02/28 Javascript
js canvas实现QQ拨打电话特效
2017/05/10 Javascript
Vue项目组件化工程开发实践方案
2018/01/09 Javascript
详解基于Node.js的HTTP/2 Server实践
2018/05/31 Javascript
Javascript Symbol原理及使用方法解析
2020/10/22 Javascript
[02:05]2014DOTA2西雅图国际邀请赛 BBC第二天小组赛总结
2014/07/11 DOTA
浅谈Python数据类型判断及列表脚本操作
2016/11/04 Python
Flask框架的学习指南之用户登录管理
2016/11/20 Python
Python数据操作方法封装类实例
2017/06/23 Python
Python正确重载运算符的方法示例详解
2017/08/27 Python
python密码错误三次锁定(实例讲解)
2017/11/14 Python
Python实现k-means算法
2018/02/23 Python
详解Python中的动态属性和特性
2018/04/07 Python
Django-Rest-Framework 权限管理源码浅析(小结)
2018/11/12 Python
Python一行代码解决矩阵旋转的问题
2019/11/30 Python
django 实现手动存储文件到model的FileField
2020/03/30 Python
用于ETL的Python数据转换工具详解
2020/07/21 Python
纯CSS实现预加载动画效果
2017/09/06 HTML / CSS
印度和世界各地的精美产品:Ikka Dukka
2018/02/12 全球购物
澳大利亚波西米亚风情网上商店:Czarina
2019/03/18 全球购物
二手房购房意向书范本
2014/04/01 职场文书
2014年教研活动总结范文
2014/04/26 职场文书
如何写好活动总结
2019/06/21 职场文书
Python3 类型标注支持操作
2021/06/02 Python
深入理解mysql事务隔离级别和存储引擎
2022/04/12 MySQL