Keras官方中文文档:性能评估Metrices详解


Posted in Python onJune 15, 2020

能评估

使用方法

性能评估模块提供了一系列用于模型性能评估的函数,这些函数在模型编译时由metrics关键字设置

性能评估函数类似与目标函数, 只不过该性能的评估结果讲不会用于训练.

可以通过字符串来使用域定义的性能评估函数

model.compile(loss='mean_squared_error',
    optimizer='sgd',
    metrics=['mae', 'acc'])

也可以自定义一个Theano/TensorFlow函数并使用之

from keras import metrics
 
model.compile(loss='mean_squared_error',
    optimizer='sgd',
    metrics=[metrics.mae, metrics.categorical_accuracy])

参数

y_true:真实标签,theano/tensorflow张量

y_pred:预测值, 与y_true形式相同的theano/tensorflow张量

返回值

单个用以代表输出各个数据点上均值的值

可用预定义张量

除fbeta_score额外拥有默认参数beta=1外,其他各个性能指标的参数均为y_true和y_pred

binary_accuracy: 对二分类问题,计算在所有预测值上的平均正确率

categorical_accuracy:对多分类问题,计算再所有预测值上的平均正确率

sparse_categorical_accuracy:与categorical_accuracy相同,在对稀疏的目标值预测时有用

top_k_categorical_accracy: 计算top-k正确率,当预测值的前k个值中存在目标类别即认为预测正确

sparse_top_k_categorical_accuracy:与top_k_categorical_accracy作用相同,但适用于稀疏情况

定制评估函数

定制的评估函数可以在模型编译时传入,该函数应该以(y_true, y_pred)为参数,并返回单个张量,或从metric_name映射到metric_value的字典,下面是一个示例:

(y_true, y_pred) as arguments and return a single tensor value.
import keras.backend as K
def mean_pred(y_true, y_pred):
 return K.mean(y_pred)
 
model.compile(optimizer='rmsprop',
    loss='binary_crossentropy',
    metrics=['accuracy', mean_pred])

补充知识:Keras.metrics中的accuracy总结

1. 背景

Accuracy(准确率)是机器学习中最简单的一种评价模型好坏的指标,每一个从事机器学习工作的人一定都使用过这个指标。没从事过机器学习的人大都也知道这个指标,比如你去向别人推销一款自己做出来的字符识别软件,人家一定会问你准确率是多少。准确率听起来简单,但不是所有人都能理解得透彻,本文将介绍Keras中accuracy(也适用于Tensorflow)的几个新“玩法”。

2. Keras中的accuracy介绍

Keras.metrics中总共给出了6种accuracy,如下图所示:

Keras官方中文文档:性能评估Metrices详解

接下来将对这些accuracy进行逐个介绍。

1) accuracy

该accuracy就是大家熟知的最朴素的accuracy。比如我们有6个样本,其真实标签y_true为[0, 1, 3, 3, 4, 2],但被一个模型预测为了[0, 1, 3, 4, 4, 4],即y_pred=[0, 1, 3, 4, 4, 4],那么该模型的accuracy=4/6=66.67%。

2) binary_accuracy

binary_accuracy和accuracy最大的不同就是,它适用于2分类的情况。从上图中可以看到binary_accuracy的计算除了y_true和y_pred外,还有一个threshold参数,该参数默认为0.5。比如有6个样本,其y_true为[0, 0, 0, 1, 1, 0],y_pred为[0.2, 0.3, 0.6, 0.7, 0.8, 0.1],那么其binary_accuracy=5/6=87.5%。具体计算方法为:1)将y_pred中的每个预测值和threshold对比,大于threshold的设为1,小于等于threshold的设为0,得到y_pred_new=[0, 0, 1, 1, 1, 0];2)将y_true和y_pred_new代入到2.1中计算得到最终的binary_accuracy=87.5%。

3) categorical_accuracy

categorical_accuracy和accuracy也很像。不同的是accuracy针对的是y_true和y_pred都为具体标签的情况,而categorical_accuracy针对的是y_true为onehot标签,y_pred为向量的情况。比如有4个样本,其y_true为[[0, 0, 1], [0, 1, 0], [0, 1, 0], [1, 0, 0]],y_pred为[[0.1, 0.6, 0.3], [0.2, 0.7, 0.1], [0.3, 0.6, 0.1], [0.9, 0, 0.1]],则其categorical_accuracy为75%。具体计算方法为:1)将y_true转为非onehot的形式,即y_true_new=[2, 1, 1, 0];2)根据y_pred中的每个样本预测的分数得到y_pred_new=[1, 1, 1, 0];3)将y_true_new和y_pred_new代入到2.1中计算得到最终的categorical_accuracy=75%。

4) sparse_categorical_accuracy

和categorical_accuracy功能一样,只是其y_true为非onehot的形式。比如有4个样本,其y_true为[2, 1, 1, 0],y_pred为[[0.1, 0.6, 0.3], [0.2, 0.7, 0.1], [0.3, 0.6, 0.1], [0.9, 0, 0.1]],则其categorical_accuracy为75%。具体计算方法为:1)根据y_pred中的每个样本预测的分数得到y_pred_new=[1, 1, 1, 0];2)将y_true和y_pred_new代入到2.1中计算得到最终的categorical_accuracy=75%。

5) top_k_categorical_accuracy

在categorical_accuracy的基础上加上top_k。categorical_accuracy要求样本在真值类别上的预测分数是在所有类别上预测分数的最大值,才算预测对,而top_k_categorical_accuracy只要求样本在真值类别上的预测分数排在其在所有类别上的预测分数的前k名就行。比如有4个样本,其y_true为[[0, 0, 1], [0, 1, 0], [0, 1, 0], [1, 0, 0]],y_pred为[[0.3, 0.6, 0.1], [0.5, 0.4, 0.1], [0.3, 0.6, 0.1], [0.9, 0, 0.1]],根据前面知识我们可以计算得到其categorical_accuracy=50%,但是其top_k_categorical_accuracy是多少呢?答案跟k息息相关。如果k大于或等于3,其top_k_categorical_accuracy毫无疑问是100%,因为总共就3个类别。如果k小于3,那就要计算了,比如k=2,那么top_k_categorical_accuracy=75%。具体计算方法为:1)将y_true转为非onehot的形式,即y_true_new=[2, 1, 1, 0];2)计算y_pred的top_k的label,比如k=2时,y_pred_new = [[0, 1], [0, 1], [0, 1], [0, 2]];3)根据每个样本的真实标签是否在预测标签的top_k内来统计准确率,上述4个样本为例,2不在[0, 1]内,1在[0, 1]内,1在[0, 1]内,0在[0, 2]内,4个样本总共预测对了3个,因此k=2时top_k_categorical_accuracy=75%。说明一下,Keras中计算top_k_categorical_accuracy时默认的k值为5。

6) sparse_top_k_categorical_accuracy

和top_k_categorical_accuracy功能一样,只是其y_true为非onehot的形式。比如有4个样本,其y_true为[2, 1, 1, 0],y_pred为[[0.3, 0.6, 0.1], [0.5, 0.4, 0.1], [0.3, 0.6, 0.1], [0.9, 0, 0.1]]。计算sparse_top_k_categorical_accuracy的步骤如下:1)计算y_pred的top_k的label,比如k=2时,y_pred_new = [[0, 1], [0, 1], [0, 1], [0, 2]];2)根据每个样本的真实标签是否在预测标签的top_k内来统计准确率,上述4个样本为例,2不在[0, 1]内,1在[0, 1]内,1在[0, 1]内,0在[0, 2]内,4个样本总共预测对了3个,因此k=2时top_k_categorical_accuracy=75%。

3. 总结

综上,keras中的accuracy metric用法很多,大家可以根据自己的实际情况选择合适的accuracy metric。以下是几个比较常见的用法:

1) 当你的标签和预测值都是具体的label index(如y_true=[1, 2, 1], y_pred=[0, 1, 1])时,用keras.metrics.accuracy。

2) 当你的标签是具体的label index,而prediction是向量形式(如y_true=[1, 2, 1], y_pred=[[0.2, 0.3, 0.5], [0.9, 0.1, 0], [0, 0.4, 0.6]])时,用keras.metrics.sparse_categorical_accuracy。

3)当你的标签是onehot形式,而prediction是向量形式(如y_true=[[0, 1, 0], [0, 0, 1], [0, 1, 0]], y_pred=[[0.2, 0.3, 0.5], [0.9, 0.1, 0], [0, 0.4, 0.6]])时,用keras.metrics.categorical_accuracy。

当然,还有其他更高级的用法,比如对每个类别的accuracy求平均,或者对每个类别的accuracy进行加权,或者对每个样本的accuracy进行加权等,不在本文的讨论范围,大家有兴趣可以去参考Tensorflow或者Keras的官方文档。

以上这篇Keras官方中文文档:性能评估Metrices详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python enumerate遍历数组示例应用
Sep 06 Python
用Python写的图片蜘蛛人代码
Aug 27 Python
Python函数中的函数(闭包)用法实例
Mar 15 Python
Python使用lxml模块和Requests模块抓取HTML页面的教程
May 16 Python
python 字典(dict)按键和值排序
Jun 28 Python
python模仿网页版微信发送消息功能
Feb 24 Python
对Python发送带header的http请求方法详解
Jan 02 Python
pandas dataframe添加表格框线输出的方法
Feb 08 Python
Pytorch 计算误判率,计算准确率,计算召回率的例子
Jan 18 Python
Macbook安装Python最新版本、GUI开发环境、图像处理、视频处理环境详解
Feb 17 Python
如何对python的字典进行排序
Jun 19 Python
python time()的实例用法
Nov 03 Python
在keras里面实现计算f1-score的代码
Jun 15 #Python
Python流程控制语句的深入讲解
Jun 15 #Python
keras自定义损失函数并且模型加载的写法介绍
Jun 15 #Python
python语言是免费还是收费的?
Jun 15 #Python
DataFrame.groupby()所见的各种用法详解
Jun 14 #Python
详解pandas.DataFrame.plot() 画图函数
Jun 14 #Python
Pandas把dataframe或series转换成list的方法
Jun 14 #Python
You might like
php 需要掌握的东西 不做浮躁的人
2009/12/28 PHP
qq登录,新浪微博登录接口申请过程中遇到的问题
2014/07/22 PHP
Yii中render和renderPartial的区别
2014/09/03 PHP
UPUPW 更新 64 位 Apache 系列 PHP 7.0 正式版
2015/12/08 PHP
javascript 数组排序函数
2009/08/20 Javascript
jquery 学习之二 属性 文本与值(text,val)
2010/11/25 Javascript
js改变文章字体大小的实例代码
2013/11/27 Javascript
JavaScript实现三阶幻方算法谜题解答
2014/12/29 Javascript
在JavaScript中处理时间之getHours()方法的使用
2015/06/10 Javascript
超赞的动手创建JavaScript框架的详细教程
2015/06/30 Javascript
Bootstrap插件全集
2016/07/18 Javascript
极力推荐10个短小实用的JavaScript代码段
2016/08/03 Javascript
使用ionic切换页面卡顿的解决方法
2016/12/16 Javascript
Vue.js学习之计算属性
2017/01/22 Javascript
解决BootStrap Fileinput手机图片上传显示旋转问题
2017/06/01 Javascript
Angularjs在360兼容模式下取数据缓存问题的解决办法
2017/06/22 Javascript
解决ie img标签内存泄漏的问题
2017/10/13 Javascript
JS引用传递与值传递的区别与用法分析
2018/06/01 Javascript
30分钟精通React今年最劲爆的新特性——React Hooks
2019/03/11 Javascript
如何从零开始手写Koa2框架
2019/03/22 Javascript
详解JavaScript中的函数、对象
2019/04/01 Javascript
[01:03:38]2014 DOTA2国际邀请赛中国区预选赛5.21 CNB VS CIS
2014/05/22 DOTA
使用Nginx+uWsgi实现Python的Django框架站点动静分离
2016/03/21 Python
你真的了解Python的random模块吗?
2017/12/12 Python
Python获取指定文件夹下的文件名的方法
2018/02/06 Python
Python实战购物车项目的实现参考
2019/02/20 Python
浅谈python已知元素,获取元素索引(numpy,pandas)
2019/11/26 Python
Django如何实现防止XSS攻击
2020/10/13 Python
阿玛尼化妆品美国官网:Giorgio Armani Beauty
2017/02/02 全球购物
波兰家居和花园家具专家:4Home
2019/05/26 全球购物
Ooni英国官网:披萨烤箱
2020/05/31 全球购物
热能动力工程毕业生自荐信
2013/11/07 职场文书
五一口号
2014/06/19 职场文书
结婚喜宴迎宾词
2015/08/10 职场文书
小学秋季运动会通讯稿
2015/11/25 职场文书
Django展示可视化图表的多种方式
2021/04/08 Python