python+pandas生成指定日期和重采样的方法


Posted in Python onApril 11, 2018

python 日期的范围、频率、重采样以及频率转换

pandas有一整套的标准时间序列频率以及用于重采样、频率推断、生成固定频率日期范围的工具。

生成指定日期范围的范围

pandas.date_range()用于生成指定长度的DatatimeIndex:

1)默认情况下,date_range会按着时间间隔为天的方式生成从给定开始到结束时间的时间戳数组;

2)如果只指定开始或结束时间,还需要periods标定时间长度。

import pandas as pd
pd.date_range('2017-6-20','2017-6-27')
DatetimeIndex(['2017-06-20', '2017-06-21', '2017-06-22', '2017-06-23',
   '2017-06-24', '2017-06-25', '2017-06-26', '2017-06-27'],
   dtype='datetime64[ns]', freq='D')
pd.date_range('2017-6-20 12:59:30','2017-6-27')
DatetimeIndex(['2017-06-20 12:59:30', '2017-06-21 12:59:30',
   '2017-06-22 12:59:30', '2017-06-23 12:59:30',
   '2017-06-24 12:59:30', '2017-06-25 12:59:30',
   '2017-06-26 12:59:30'],
   dtype='datetime64[ns]', freq='D')
pd.date_range('2017-6-20 12:59:30',periods = 8)
DatetimeIndex(['2017-06-20 12:59:30', '2017-06-21 12:59:30',
   '2017-06-22 12:59:30', '2017-06-23 12:59:30',
   '2017-06-24 12:59:30', '2017-06-25 12:59:30',
   '2017-06-26 12:59:30', '2017-06-27 12:59:30'],
   dtype='datetime64[ns]', freq='D')
pd.date_range('2017-6-20 12:59:30',periods = 8, normalize = True)
DatetimeIndex(['2017-06-20', '2017-06-21', '2017-06-22', '2017-06-23',
   '2017-06-24', '2017-06-25', '2017-06-26', '2017-06-27'],
   dtype='datetime64[ns]', freq='D')

频率和日期偏移量

pandas中的频率是由一个基础频率(M、H)也可以是(Hour、Minute、h、min等)

pd.date_range('2017-6-27',periods = 7,freq = '1h30min')
DatetimeIndex(['2017-06-27 00:00:00', '2017-06-27 01:30:00',
   '2017-06-27 03:00:00', '2017-06-27 04:30:00',
   '2017-06-27 06:00:00', '2017-06-27 07:30:00',
   '2017-06-27 09:00:00'],
   dtype='datetime64[ns]', freq='90T')
pd.date_range('2017-6-27',periods = 7,freq = 'M')
DatetimeIndex(['2017-06-30', '2017-07-31', '2017-08-31', '2017-09-30',
   '2017-10-31', '2017-11-30', '2017-12-31'],
   dtype='datetime64[ns]', freq='M')
pd.date_range('2017-6-27',periods = 7,freq = 'd')
DatetimeIndex(['2017-06-27', '2017-06-28', '2017-06-29', '2017-06-30',
   '2017-07-01', '2017-07-02', '2017-07-03'],
   dtype='datetime64[ns]', freq='D')
pd.date_range('2017-6-27',periods = 7,freq = 'H')
DatetimeIndex(['2017-06-27 00:00:00', '2017-06-27 01:00:00',
   '2017-06-27 02:00:00', '2017-06-27 03:00:00',
   '2017-06-27 04:00:00', '2017-06-27 05:00:00',
   '2017-06-27 06:00:00'],
   dtype='datetime64[ns]', freq='H')

常用的基础频率

别名 偏移量 说明
D/d Day 每日历日
B BusinessDay 每工作日
H/h Hour 每小时
T或min Minute 每分
S Secend 每秒
L或ms Milli 每毫秒(每千分之一秒)
U Micro 每微秒(即百万分之一秒)
M MonthEnd 每月最后一个日历日
BM BusinessDayEnd 每月最后一个工作

上表只展示了部分!

WOM日期(可获得例如“每月第3个星期五”)

pd.date_range('2017-06-01','2017-07-31',freq='WOM-3FRI')
DatetimeIndex(['2017-06-16', '2017-07-21'], dtype='datetime64[ns]', freq='WOM-3FRI')

重采样及频率转换

降采样:高频数据到低频数据

升采样:低频数据到高频数据

主要函数:resample()(pandas对象都会有这个方法)

resample方法的参数

参数 说明
freq 表示重采样频率,例如‘M'、‘5min',Second(15)
how='mean' 用于产生聚合值的函数名或数组函数,例如‘mean'、‘ohlc'、np.max等,默认是‘mean',其他常用的值由:‘first'、‘last'、‘median'、‘max'、‘min'
axis=0 默认是纵轴,横轴设置axis=1
fill_method = None 升采样时如何插值,比如‘ffill'、‘bfill'等
closed = ‘right' 在降采样时,各时间段的哪一段是闭合的,‘right'或‘left',默认‘right'
label= ‘right' 在降采样时,如何设置聚合值的标签,例如,9:30-9:35会被标记成9:30还是9:35,默认9:35
loffset = None 面元标签的时间校正值,比如‘-1s'或Second(-1)用于将聚合标签调早1秒
limit=None 在向前或向后填充时,允许填充的最大时期数
kind = None 聚合到时期(‘period')或时间戳(‘timestamp'),默认聚合到时间序列的索引类型
convention = None 当重采样时期时,将低频率转换到高频率所采用的约定(start或end)。默认‘end'

降采样

需考虑:

1)各区间哪边是闭合的(参数:closed)

2)如何标记各聚合面元,用区间的开头还是末尾(参数:label)

ts_index = pd.date_range('2017-06-20',periods =12,freq = '1min')#一分钟采样数据
ts = pd.Series(np.arange(12),index = ts_index)
ts
2017-06-20 00:00:00 0
 2017-06-20 00:01:00 1
 2017-06-20 00:02:00 2
 2017-06-20 00:03:00 3
 2017-06-20 00:04:00 4
 2017-06-20 00:05:00 5
 2017-06-20 00:06:00 6
 2017-06-20 00:07:00 7
 2017-06-20 00:08:00 8
 2017-06-20 00:09:00 9
 2017-06-20 00:10:00 10
 2017-06-20 00:11:00 11
 Freq: T, dtype: int32

聚合到5分钟

ts.resample('5min',how='sum')
C:\Program Files\anaconda\lib\site-packages\ipykernel\__main__.py:1: FutureWarning: how in .resample() is deprecated
 the new syntax is .resample(...).sum()
 if __name__ == '__main__':
 2017-06-20 00:00:00 10
 2017-06-20 00:05:00 35
 2017-06-20 00:10:00 21
 Freq: 5T, dtype: int32
ts.resample('5min',how='sum',closed='left')
C:\Program Files\anaconda\lib\site-packages\ipykernel\__main__.py:1: FutureWarning: how in .resample() is deprecated
 the new syntax is .resample(...).sum()
 if __name__ == '__main__':
 2017-06-20 00:00:00 10
 2017-06-20 00:05:00 35
 2017-06-20 00:10:00 21
 Freq: 5T, dtype: int32
ts.resample('5min',how='sum',closed='left',label ='left')
C:\Program Files\anaconda\lib\site-packages\ipykernel\__main__.py:1: FutureWarning: how in .resample() is deprecated
 the new syntax is .resample(...).sum()
 if __name__ == '__main__':
 2017-06-20 00:00:00 10
 2017-06-20 00:05:00 35
 2017-06-20 00:10:00 21
 Freq: 5T, dtype: int32

通过groupby进行重插样

另外一种降采样方法

ts1_index = pd.date_range('2017-6-01',periods = 100,freq = 'd')
ts1 = pd.Series(np.arange(100),index = ts1_index)
ts1.head()
2017-06-01 0
 2017-06-02 1
 2017-06-03 2
 2017-06-04 3
 2017-06-05 4
 Freq: D, dtype: int32
ts1.groupby(lambda x:x.month).mean()
6 14.5
 7 45.0
 8 76.0
 9 95.5
 dtype: float64
ts1.groupby(lambda x:x.weekday).mean()
0 49.5
 1 50.5
 2 51.5
 3 49.0
 4 50.0
 5 47.5
 6 48.5
 dtype: float64
df1 = pd.DataFrame(np.arange(200).reshape(100,2),index = ts1_index)
df1.groupby(lambda x:x.weekday).mean()

0 1
0 99 100
1 101 102
2 103 104
3 98 99
4 100 101
5 95 96
6 97 98

对于具有时间序列索引的pandas数据结构,当groupby传入一个函数时,可以对时间索引对应列进行聚合

升采样

升采样没有聚合,但是需要填充

df2 = pd.DataFrame(np.arange(200).reshape(100,2),index = ts1_index,columns=['add1','add2'])
df2.head()

add1 add2
2017-06-01 0 1
2017-06-02 2 3
2017-06-03 4 5
2017-06-04 6 7
2017-06-05 8 9
df2.resample('W-THU',fill_method = 'ffill')
C:\Program Files\anaconda\lib\site-packages\ipykernel\__main__.py:1: FutureWarning: fill_method is deprecated to .resample()
 the new syntax is .resample(...).ffill()
 if __name__ == '__main__':

add1 add2
2017-06-01 0 1
2017-06-08 14 15
2017-06-15 28 29
2017-06-22 42 43
2017-06-29 56 57
2017-07-06 70 71
2017-07-13 84 85
2017-07-20 98 99
2017-07-27 112 113
2017-08-03 126 127
2017-08-10 140 141
2017-08-17 154 155
2017-08-24 168 169
2017-08-31 182 183
2017-09-07 196 197
2017-09-14 198 199

总结

本篇博客主要内容:

1)生成指定时间段,指定频率的日期

2)对含有时间索引的pandas数据进行重采样,包括降采样和升采样等。

Python 相关文章推荐
Python程序设计入门(5)类的使用简介
Jun 16 Python
详解Python中的多线程编程
Apr 09 Python
python监控键盘输入实例代码
Feb 09 Python
python 列表删除所有指定元素的方法
Apr 19 Python
python清除字符串中间空格的实例讲解
May 11 Python
Python简单获取二维数组行列数的方法示例
Dec 21 Python
DRF跨域后端解决之django-cors-headers的使用
Jan 27 Python
Flask框架钩子函数功能与用法分析
Aug 02 Python
如何用Python 加密文件
Sep 10 Python
让你相见恨晚的十个Python骚操作
Nov 18 Python
浅析python实现动态规划背包问题
Dec 31 Python
python数字图像处理之对比度与亮度调整示例
Jun 28 Python
python dataframe astype 字段类型转换方法
Apr 11 #Python
pandas series序列转化为星期几的实例
Apr 11 #Python
pandas的object对象转时间对象的方法
Apr 11 #Python
Python实现判断给定列表是否有重复元素的方法
Apr 11 #Python
python的dataframe转换为多维矩阵的方法
Apr 11 #Python
python的dataframe和matrix的互换方法
Apr 11 #Python
pandas DataFrame数据转为list的方法
Apr 11 #Python
You might like
php下图片文字混合水印与缩略图实现代码
2009/12/11 PHP
用PHP查询搜索引擎排名位置的代码
2010/01/05 PHP
php+mysql不用递归实现的无限级分类实例(非递归)
2014/07/08 PHP
简单实用的网站PHP缓存类实例
2014/07/18 PHP
PHP命名空间和自动加载类
2016/04/03 PHP
php 截取GBK文档某个位置开始的n个字符方法
2017/03/08 PHP
javascript右下角弹层及自动隐藏(自己编写)
2013/11/20 Javascript
jquery each的几种常用的使用方法示例
2014/01/21 Javascript
jquery实现点击消失的代码
2014/03/03 Javascript
详谈nodejs异步编程
2014/12/04 NodeJs
如何判断Javascript对象是否存在的简单实例
2016/05/18 Javascript
JavaScript仿支付宝6位数字密码输入框
2016/12/29 Javascript
浅析jsopn跨域请求原理及cors(跨域资源共享)的完美解决方法
2017/02/06 Javascript
JavaScript实现的可变动态数字键盘控件方式实例代码
2017/07/15 Javascript
详解webpack的配置文件entry与output
2017/08/21 Javascript
Vue shopCart 组件开发详解
2018/01/26 Javascript
vue项目中api接口管理总结
2018/04/20 Javascript
使用vue-router完成简单导航功能【推荐】
2018/06/28 Javascript
微信小程序中显示倒计时代码实例
2019/05/09 Javascript
JavaScript 扩展运算符用法实例小结【基于ES6】
2019/06/17 Javascript
Vue2.X和Vue3.0数据响应原理变化的区别
2019/11/07 Javascript
[10:21]DOTA2-DPC中国联赛 正赛 PSG.LGD vs Aster 选手采访
2021/03/11 DOTA
[01:16:28]DOTA2-DPC中国联赛 正赛 iG vs Magma BO3 第二场 2月23日
2021/03/11 DOTA
Python中列表、字典、元组数据结构的简单学习笔记
2016/03/20 Python
python中文乱码不着急,先看懂字节和字符
2017/12/20 Python
Python3.5面向对象编程图文与实例详解
2019/04/24 Python
对pyqt5之menu和action的使用详解
2019/06/20 Python
python 并发下载器实现方法示例
2019/11/22 Python
使用python+whoosh实现全文检索
2019/12/09 Python
怎么快速自学python
2020/06/22 Python
美国电力供应商店/电气批发商:USESI
2018/10/12 全球购物
大学生文员专业个人求职信范文
2014/01/05 职场文书
入股协议书范本
2014/04/14 职场文书
效能监察建议书
2014/05/19 职场文书
全陪导游词
2015/02/04 职场文书
PhpSpreadsheet中文文档 | Spreadsheet操作教程实例
2021/04/01 PHP