Python编程实现蚁群算法详解


Posted in Python onNovember 13, 2017

简介

蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。
定义

各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种挥发性分泌物pheromone (称为信息素,该物质随着时间的推移会逐渐挥发消失,信息素浓度的大小表征路径的远近)来实现的,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物。有些蚂蚁并没有像其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果另开辟的道路比原来的其他道路更短,那么,渐渐地,更多的蚂蚁被吸引到这条较短的路上来。最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。

解决的问题

三维地形中,给出起点和重点,找到其最优路径。

Python编程实现蚁群算法详解

作图源码:

from mpl_toolkits.mplot3d import proj3d
from mpl_toolkits.mplot3d import Axes3D
import numpy as np

height3d = np.array([[2000,1400,800,650,500,750,1000,950,900,800,700,900,1100,1050,1000,1150,1300,1250,1200,1350,1500],          [1100,900,700,625,550,825,1100,1150,1200,925,650,750,850,950,1050,1175,1300,1350,1400,1425,1450],          [200,400,600,600,600,900,1200,1350,1500,1050,600,600,600,850,1100,1200,1300,1450,1600,1500,1400],          [450,500,550,575,600,725,850,875,900,750,600,600,600,725,850,900,950,1150,1350,1400,1450],          [700,600,500,550,600,550,500,400,300,450,600,600,600,600,600,600,600,850,1100,1300,1500],          [500,525,550,575,600,575,550,450,350,475,600,650,700,650,600,600,600,725,850,1150,1450],          [300,450,600,600,600,600,600,500,400,500,600,700,800,700,600,600,600,600,600,1000,1400],          [550,525,500,550,600,875,1150,900,650,725,800,700,600,875,1150,1175,1200,975,750,875,1000],          [800,600,400,500,600,1150,1700,1300,900,950,1000,700,400,1050,1700,1750,1800,1350,900,750,600],          [650,600,550,625,700,1175,1650,1275,900,1100,1300,1275,1250,1475,1700,1525,1350,1200,1050,950,850],          [500,600,700,750,800,1200,1600,1250,900,1250,1600,1850,2100,1900,1700,1300,900,1050,1200,1150,1100],          [400,375,350,600,850,1200,1550,1250,950,1225,1500,1750,2000,1950,1900,1475,1050,975,900,1175,1450],          [300,150,0,450,900,1200,1500,1250,1000,1200,1400,1650,1900,2000,2100,1650,1200,900,600,1200,1800],          [600,575,550,750,950,1275,1600,1450,1300,1300,1300,1525,1750,1625,1500,1450,1400,1125,850,1200,1550],          [900,1000,1100,1050,1000,1350,1700,1650,1600,1400,1200,1400,1600,1250,900,1250,1600,1350,1100,1200,1300],          [750,850,950,900,850,1000,1150,1175,1200,1300,1400,1325,1250,1125,1000,1150,1300,1075,850,975,1100],          [600,700,800,750,700,650,600,700,800,1200,1600,1250,900,1000,1100,1050,1000,800,600,750,900],          [750,775,800,725,650,700,750,775,800,1000,1200,1025,850,975,1100,950,800,900,1000,1050,1100],          [900,850,800,700,600,750,900,850,800,800,800,800,800,950,1100,850,600,1000,1400,1350,1300],          [750,800,850,850,850,850,850,825,800,750,700,775,850,1000,1150,875,600,925,1250,1100,950],          [600,750,900,1000,1100,950,800,800,800,700,600,750,900,1050,1200,900,600,850,1100,850,600]])

fig = figure()
ax = Axes3D(fig)
X = np.arange(21)
Y = np.arange(21)
X, Y = np.meshgrid(X, Y)
Z = -20*np.exp(-0.2*np.sqrt(np.sqrt(((X-10)**2+(Y-10)**2)/2)))+20+np.e-np.exp((np.cos(2*np.pi*X)+np.sin(2*np.pi*Y))/2)
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='cool')
ax.set_xlabel('X axis')
ax.set_ylabel('Y axis')
ax.set_zlabel('Z')
ax.set_title('3D map')


point0 = [0,9,Z[0][9]] 
point1 = [20,7,Z[20][7]]

ax.plot([point0[0]],[point0[1]],[point0[2]],'r',marker = u'o',markersize = 15)
ax.plot([point1[0]],[point1[1]],[point1[2]],'r',marker = u'o',markersize = 15)

x0,y0,_ = proj3d.proj_transform(point0[0],point0[1],point0[2], ax.get_proj())
x1,y1,_ = proj3d.proj_transform(point1[0],point1[1],point1[2], ax.get_proj())

label = pylab.annotate(
  "start", 
  xy = (x0, y0), xytext = (-20, 20),
  textcoords = 'offset points', ha = 'right', va = 'bottom',
  bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 1),
  arrowprops = dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0'),fontsize=15)
label2 = pylab.annotate(
  "end", 
  xy = (x1, y1), xytext = (-20, 20),
  textcoords = 'offset points', ha = 'right', va = 'bottom',
  bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 1),
  arrowprops = dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0'),fontsize=15)
def update_position(e):
  x2, y2, _ = proj3d.proj_transform(point0[0],point0[1],point0[2],ax.get_proj())
  label.xy = x2,y2
  label.update_positions(fig.canvas.renderer)

  x1,y1,_ = proj3d.proj_transform(point1[0],point1[1],point1[2],ax.get_proj())
  label2.xy = x1,y1
  label2.update_positions(fig.canvas.renderer)
  fig.canvas.draw()

fig.canvas.mpl_connect('button_release_event', update_position)

基本原理

蚂蚁k根据各个城市间链接路径上的信息素浓度决定其下一个访问城市,设Pkij(t)表示t时刻蚂蚁k从城市i转移到矩阵j的概率,其计算公式为

Python编程实现蚁群算法详解

计算完城市间的转移概率后,采用与遗传算法中一样的轮盘赌方法选择下一个待访问的城市。

当所有的蚂蚁完成一次循环后,各个城市间链接路径上的信息素浓度需进行更新,计算公式为

Python编程实现蚁群算法详解

其中,Δτkij表示第k只蚂蚁在城市i与城市j连接路径上释放的信息素浓度;Δτij表示所有蚂蚁在城市i与城市j连接路径上释放的信息素浓度之和。

蚂蚁释放信息素的模型

Python编程实现蚁群算法详解

程序代码:

import numpy as np
import matplotlib.pyplot as plt
%pylab
coordinates = np.array([[565.0,575.0],[25.0,185.0],[345.0,750.0],[945.0,685.0],[845.0,655.0],
            [880.0,660.0],[25.0,230.0],[525.0,1000.0],[580.0,1175.0],[650.0,1130.0],
            [1605.0,620.0],[1220.0,580.0],[1465.0,200.0],[1530.0, 5.0],[845.0,680.0],
            [725.0,370.0],[145.0,665.0],[415.0,635.0],[510.0,875.0],[560.0,365.0],
            [300.0,465.0],[520.0,585.0],[480.0,415.0],[835.0,625.0],[975.0,580.0],
            [1215.0,245.0],[1320.0,315.0],[1250.0,400.0],[660.0,180.0],[410.0,250.0],
            [420.0,555.0],[575.0,665.0],[1150.0,1160.0],[700.0,580.0],[685.0,595.0],
            [685.0,610.0],[770.0,610.0],[795.0,645.0],[720.0,635.0],[760.0,650.0],
            [475.0,960.0],[95.0,260.0],[875.0,920.0],[700.0,500.0],[555.0,815.0],
            [830.0,485.0],[1170.0, 65.0],[830.0,610.0],[605.0,625.0],[595.0,360.0],
            [1340.0,725.0],[1740.0,245.0]])
def getdistmat(coordinates):
  num = coordinates.shape[0]
  distmat = np.zeros((52,52))
  for i in range(num):
    for j in range(i,num):
      distmat[i][j] = distmat[j][i]=np.linalg.norm(coordinates[i]-coordinates[j])
  return distmat
distmat = getdistmat(coordinates)
numant = 40 #蚂蚁个数
numcity = coordinates.shape[0] #城市个数
alpha = 1  #信息素重要程度因子
beta = 5  #启发函数重要程度因子
rho = 0.1  #信息素的挥发速度
Q = 1
iter = 0
itermax = 250
etatable = 1.0/(distmat+np.diag([1e10]*numcity)) #启发函数矩阵,表示蚂蚁从城市i转移到矩阵j的期望程度
pheromonetable = np.ones((numcity,numcity)) # 信息素矩阵
pathtable = np.zeros((numant,numcity)).astype(int) #路径记录表
distmat = getdistmat(coordinates) #城市的距离矩阵
lengthaver = np.zeros(itermax) #各代路径的平均长度
lengthbest = np.zeros(itermax) #各代及其之前遇到的最佳路径长度
pathbest = np.zeros((itermax,numcity)) # 各代及其之前遇到的最佳路径长度
while iter < itermax:
  # 随机产生各个蚂蚁的起点城市
  if numant <= numcity:#城市数比蚂蚁数多
    pathtable[:,0] = np.random.permutation(range(0,numcity))[:numant]
  else: #蚂蚁数比城市数多,需要补足
    pathtable[:numcity,0] = np.random.permutation(range(0,numcity))[:]
    pathtable[numcity:,0] = np.random.permutation(range(0,numcity))[:numant-numcity]
  length = np.zeros(numant) #计算各个蚂蚁的路径距离
  for i in range(numant):
    visiting = pathtable[i,0] # 当前所在的城市
    #visited = set() #已访问过的城市,防止重复
    #visited.add(visiting) #增加元素
    unvisited = set(range(numcity))#未访问的城市
    unvisited.remove(visiting) #删除元素
    for j in range(1,numcity):#循环numcity-1次,访问剩余的numcity-1个城市
      #每次用轮盘法选择下一个要访问的城市
      listunvisited = list(unvisited)
      probtrans = np.zeros(len(listunvisited))
      for k in range(len(listunvisited)):
        probtrans[k] = np.power(pheromonetable[visiting][listunvisited[k]],alpha)\
            *np.power(etatable[visiting][listunvisited[k]],alpha)
      cumsumprobtrans = (probtrans/sum(probtrans)).cumsum()
      cumsumprobtrans -= np.random.rand()
      k = listunvisited[find(cumsumprobtrans>0)[0]] #下一个要访问的城市
      pathtable[i,j] = k
      unvisited.remove(k)
      #visited.add(k)
      length[i] += distmat[visiting][k]
      visiting = k
    length[i] += distmat[visiting][pathtable[i,0]] #蚂蚁的路径距离包括最后一个城市和第一个城市的距离
  #print length
  # 包含所有蚂蚁的一个迭代结束后,统计本次迭代的若干统计参数
  lengthaver[iter] = length.mean()
  if iter == 0:
    lengthbest[iter] = length.min()
    pathbest[iter] = pathtable[length.argmin()].copy()   
  else:
    if length.min() > lengthbest[iter-1]:
      lengthbest[iter] = lengthbest[iter-1]
      pathbest[iter] = pathbest[iter-1].copy()
    else:
      lengthbest[iter] = length.min()
      pathbest[iter] = pathtable[length.argmin()].copy()  
  # 更新信息素
  changepheromonetable = np.zeros((numcity,numcity))
  for i in range(numant):
    for j in range(numcity-1):
      changepheromonetable[pathtable[i,j]][pathtable[i,j+1]] += Q/distmat[pathtable[i,j]][pathtable[i,j+1]]
    changepheromonetable[pathtable[i,j+1]][pathtable[i,0]] += Q/distmat[pathtable[i,j+1]][pathtable[i,0]]
  pheromonetable = (1-rho)*pheromonetable + changepheromonetable
  iter += 1 #迭代次数指示器+1
  #观察程序执行进度,该功能是非必须的
  if (iter-1)%20==0: 
    print iter-1
# 做出平均路径长度和最优路径长度    
fig,axes = plt.subplots(nrows=2,ncols=1,figsize=(12,10))
axes[0].plot(lengthaver,'k',marker = u'')
axes[0].set_title('Average Length')
axes[0].set_xlabel(u'iteration')
axes[1].plot(lengthbest,'k',marker = u'')
axes[1].set_title('Best Length')
axes[1].set_xlabel(u'iteration')
fig.savefig('Average_Best.png',dpi=500,bbox_inches='tight')
plt.close()
#作出找到的最优路径图
bestpath = pathbest[-1]
plt.plot(coordinates[:,0],coordinates[:,1],'r.',marker=u'$\cdot$')
plt.xlim([-100,2000])
plt.ylim([-100,1500])
for i in range(numcity-1):#
  m,n = bestpath[i],bestpath[i+1]
  print m,n
  plt.plot([coordinates[m][0],coordinates[n][0]],[coordinates[m][1],coordinates[n][1]],'k')
plt.plot([coordinates[bestpath[0]][0],coordinates[n][0]],[coordinates[bestpath[0]][1],coordinates[n][1]],'b')
ax=plt.gca()
ax.set_title("Best Path")
ax.set_xlabel('X axis')
ax.set_ylabel('Y_axis')
plt.savefig('Best Path.png',dpi=500,bbox_inches='tight')
plt.close()

Python编程实现蚁群算法详解

Python编程实现蚁群算法详解

总结

以上就是本文关于Python编程实现蚁群算法详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:python实现图片处理和特征提取详解、python图像常规操作、python先序遍历二叉树问题等,有什么问题可以随时留言,小编会及时回复大家的。感谢朋友们对本站的支持!

Python 相关文章推荐
python实现dict版图遍历示例
Feb 19 Python
python使用多线程不断刷新网页的方法
Mar 31 Python
一步步解析Python斗牛游戏的概率
Feb 12 Python
使用paramiko远程执行命令、下发文件的实例
Oct 01 Python
python中获得当前目录和上级目录的实现方法
Oct 12 Python
200 行python 代码实现 2048 游戏
Jan 12 Python
python opencv 图像尺寸变换方法
Apr 02 Python
pycharm在调试python时执行其他语句的方法
Nov 29 Python
Python WEB应用部署的实现方法
Jan 02 Python
python 串口读取+存储+输出处理实例
Dec 26 Python
Python全局变量与global关键字常见错误解决方案
Oct 05 Python
python smtplib发送多个email联系人的实现
Oct 09 Python
Python编程实现粒子群算法(PSO)详解
Nov 13 #Python
人工智能最火编程语言 Python大战Java!
Nov 13 #Python
Python随机生成均匀分布在单位圆内的点代码示例
Nov 13 #Python
python、java等哪一门编程语言适合人工智能?
Nov 13 #Python
K-means聚类算法介绍与利用python实现的代码示例
Nov 13 #Python
python通过opencv实现批量剪切图片
Nov 13 #Python
flask + pymysql操作Mysql数据库的实例
Nov 13 #Python
You might like
基于php伪静态的实现详细介绍
2013/04/28 PHP
19个超实用的PHP代码片段
2014/03/14 PHP
php获取CSS文件中图片地址并下载到本地的方法
2014/12/02 PHP
php实现字符串翻转的方法
2015/03/27 PHP
PHP中preg_match正则匹配中的/u、/i、/s含义
2015/04/17 PHP
php实现PDO中捕获SQL语句错误的方法
2017/02/16 PHP
5秒后跳转到另一个页面的js代码
2013/10/12 Javascript
js动态调用css属性的小规律及实例说明
2013/12/28 Javascript
点击弹出层效果&amp;弹出窗口后网页背景变暗效果的实现代码
2014/02/10 Javascript
JS在IE下缺少标识符的错误
2014/07/23 Javascript
javascript字符串函数汇总
2015/12/06 Javascript
jQuery EasyUI datagrid在翻页以后仍能记录被选中行的实现代码
2016/08/15 Javascript
基于angularjs实现图片放大镜效果
2016/08/31 Javascript
jqGrid翻页时数据选中丢失问题的解决办法
2017/02/13 Javascript
JavaScript简单实现关键字文本搜索高亮显示功能示例
2018/07/25 Javascript
微信小程序地图(map)组件点击(tap)获取经纬度的方法
2019/01/10 Javascript
使用Vue父子组件通信实现todolist的功能示例代码
2019/04/11 Javascript
[06:59]DOTA2-DPC中国联赛3月7日Recap集锦
2021/03/11 DOTA
python查找指定文件夹下所有文件并按修改时间倒序排列的方法
2018/10/21 Python
python GUI库图形界面开发之PyQt5输入对话框QInputDialog详细使用方法与实例
2020/02/27 Python
解决Opencv+Python cv2.imshow闪退问题
2020/04/24 Python
Python实现密钥密码(加解密)实例详解
2020/04/26 Python
python3.6使用SMTP协议发送邮件
2020/05/20 Python
Python爬虫小例子——爬取51job发布的工作职位
2020/07/10 Python
英国独特家具和家庭用品购物网站:Cuckooland
2020/08/30 全球购物
大学毕业生通用自荐信范文
2013/10/31 职场文书
高一数学教学反思
2014/02/07 职场文书
教师党员一句话承诺
2014/03/28 职场文书
沙滩主题婚礼活动策划方案
2014/09/15 职场文书
2014年精神文明建设工作总结
2014/11/19 职场文书
2014年协会工作总结
2014/11/22 职场文书
计算机专业自荐信
2015/03/05 职场文书
2015毕业实习推荐信
2015/03/23 职场文书
2015年小班保育员工作总结
2015/05/27 职场文书
读后感怎么写?书写读后感的基本技巧!
2019/12/10 职场文书
Golang实现AES对称加密的过程详解
2021/05/20 Golang