Python编程实现蚁群算法详解


Posted in Python onNovember 13, 2017

简介

蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。
定义

各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种挥发性分泌物pheromone (称为信息素,该物质随着时间的推移会逐渐挥发消失,信息素浓度的大小表征路径的远近)来实现的,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物。有些蚂蚁并没有像其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果另开辟的道路比原来的其他道路更短,那么,渐渐地,更多的蚂蚁被吸引到这条较短的路上来。最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。

解决的问题

三维地形中,给出起点和重点,找到其最优路径。

Python编程实现蚁群算法详解

作图源码:

from mpl_toolkits.mplot3d import proj3d
from mpl_toolkits.mplot3d import Axes3D
import numpy as np

height3d = np.array([[2000,1400,800,650,500,750,1000,950,900,800,700,900,1100,1050,1000,1150,1300,1250,1200,1350,1500],          [1100,900,700,625,550,825,1100,1150,1200,925,650,750,850,950,1050,1175,1300,1350,1400,1425,1450],          [200,400,600,600,600,900,1200,1350,1500,1050,600,600,600,850,1100,1200,1300,1450,1600,1500,1400],          [450,500,550,575,600,725,850,875,900,750,600,600,600,725,850,900,950,1150,1350,1400,1450],          [700,600,500,550,600,550,500,400,300,450,600,600,600,600,600,600,600,850,1100,1300,1500],          [500,525,550,575,600,575,550,450,350,475,600,650,700,650,600,600,600,725,850,1150,1450],          [300,450,600,600,600,600,600,500,400,500,600,700,800,700,600,600,600,600,600,1000,1400],          [550,525,500,550,600,875,1150,900,650,725,800,700,600,875,1150,1175,1200,975,750,875,1000],          [800,600,400,500,600,1150,1700,1300,900,950,1000,700,400,1050,1700,1750,1800,1350,900,750,600],          [650,600,550,625,700,1175,1650,1275,900,1100,1300,1275,1250,1475,1700,1525,1350,1200,1050,950,850],          [500,600,700,750,800,1200,1600,1250,900,1250,1600,1850,2100,1900,1700,1300,900,1050,1200,1150,1100],          [400,375,350,600,850,1200,1550,1250,950,1225,1500,1750,2000,1950,1900,1475,1050,975,900,1175,1450],          [300,150,0,450,900,1200,1500,1250,1000,1200,1400,1650,1900,2000,2100,1650,1200,900,600,1200,1800],          [600,575,550,750,950,1275,1600,1450,1300,1300,1300,1525,1750,1625,1500,1450,1400,1125,850,1200,1550],          [900,1000,1100,1050,1000,1350,1700,1650,1600,1400,1200,1400,1600,1250,900,1250,1600,1350,1100,1200,1300],          [750,850,950,900,850,1000,1150,1175,1200,1300,1400,1325,1250,1125,1000,1150,1300,1075,850,975,1100],          [600,700,800,750,700,650,600,700,800,1200,1600,1250,900,1000,1100,1050,1000,800,600,750,900],          [750,775,800,725,650,700,750,775,800,1000,1200,1025,850,975,1100,950,800,900,1000,1050,1100],          [900,850,800,700,600,750,900,850,800,800,800,800,800,950,1100,850,600,1000,1400,1350,1300],          [750,800,850,850,850,850,850,825,800,750,700,775,850,1000,1150,875,600,925,1250,1100,950],          [600,750,900,1000,1100,950,800,800,800,700,600,750,900,1050,1200,900,600,850,1100,850,600]])

fig = figure()
ax = Axes3D(fig)
X = np.arange(21)
Y = np.arange(21)
X, Y = np.meshgrid(X, Y)
Z = -20*np.exp(-0.2*np.sqrt(np.sqrt(((X-10)**2+(Y-10)**2)/2)))+20+np.e-np.exp((np.cos(2*np.pi*X)+np.sin(2*np.pi*Y))/2)
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='cool')
ax.set_xlabel('X axis')
ax.set_ylabel('Y axis')
ax.set_zlabel('Z')
ax.set_title('3D map')


point0 = [0,9,Z[0][9]] 
point1 = [20,7,Z[20][7]]

ax.plot([point0[0]],[point0[1]],[point0[2]],'r',marker = u'o',markersize = 15)
ax.plot([point1[0]],[point1[1]],[point1[2]],'r',marker = u'o',markersize = 15)

x0,y0,_ = proj3d.proj_transform(point0[0],point0[1],point0[2], ax.get_proj())
x1,y1,_ = proj3d.proj_transform(point1[0],point1[1],point1[2], ax.get_proj())

label = pylab.annotate(
  "start", 
  xy = (x0, y0), xytext = (-20, 20),
  textcoords = 'offset points', ha = 'right', va = 'bottom',
  bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 1),
  arrowprops = dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0'),fontsize=15)
label2 = pylab.annotate(
  "end", 
  xy = (x1, y1), xytext = (-20, 20),
  textcoords = 'offset points', ha = 'right', va = 'bottom',
  bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 1),
  arrowprops = dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0'),fontsize=15)
def update_position(e):
  x2, y2, _ = proj3d.proj_transform(point0[0],point0[1],point0[2],ax.get_proj())
  label.xy = x2,y2
  label.update_positions(fig.canvas.renderer)

  x1,y1,_ = proj3d.proj_transform(point1[0],point1[1],point1[2],ax.get_proj())
  label2.xy = x1,y1
  label2.update_positions(fig.canvas.renderer)
  fig.canvas.draw()

fig.canvas.mpl_connect('button_release_event', update_position)

基本原理

蚂蚁k根据各个城市间链接路径上的信息素浓度决定其下一个访问城市,设Pkij(t)表示t时刻蚂蚁k从城市i转移到矩阵j的概率,其计算公式为

Python编程实现蚁群算法详解

计算完城市间的转移概率后,采用与遗传算法中一样的轮盘赌方法选择下一个待访问的城市。

当所有的蚂蚁完成一次循环后,各个城市间链接路径上的信息素浓度需进行更新,计算公式为

Python编程实现蚁群算法详解

其中,Δτkij表示第k只蚂蚁在城市i与城市j连接路径上释放的信息素浓度;Δτij表示所有蚂蚁在城市i与城市j连接路径上释放的信息素浓度之和。

蚂蚁释放信息素的模型

Python编程实现蚁群算法详解

程序代码:

import numpy as np
import matplotlib.pyplot as plt
%pylab
coordinates = np.array([[565.0,575.0],[25.0,185.0],[345.0,750.0],[945.0,685.0],[845.0,655.0],
            [880.0,660.0],[25.0,230.0],[525.0,1000.0],[580.0,1175.0],[650.0,1130.0],
            [1605.0,620.0],[1220.0,580.0],[1465.0,200.0],[1530.0, 5.0],[845.0,680.0],
            [725.0,370.0],[145.0,665.0],[415.0,635.0],[510.0,875.0],[560.0,365.0],
            [300.0,465.0],[520.0,585.0],[480.0,415.0],[835.0,625.0],[975.0,580.0],
            [1215.0,245.0],[1320.0,315.0],[1250.0,400.0],[660.0,180.0],[410.0,250.0],
            [420.0,555.0],[575.0,665.0],[1150.0,1160.0],[700.0,580.0],[685.0,595.0],
            [685.0,610.0],[770.0,610.0],[795.0,645.0],[720.0,635.0],[760.0,650.0],
            [475.0,960.0],[95.0,260.0],[875.0,920.0],[700.0,500.0],[555.0,815.0],
            [830.0,485.0],[1170.0, 65.0],[830.0,610.0],[605.0,625.0],[595.0,360.0],
            [1340.0,725.0],[1740.0,245.0]])
def getdistmat(coordinates):
  num = coordinates.shape[0]
  distmat = np.zeros((52,52))
  for i in range(num):
    for j in range(i,num):
      distmat[i][j] = distmat[j][i]=np.linalg.norm(coordinates[i]-coordinates[j])
  return distmat
distmat = getdistmat(coordinates)
numant = 40 #蚂蚁个数
numcity = coordinates.shape[0] #城市个数
alpha = 1  #信息素重要程度因子
beta = 5  #启发函数重要程度因子
rho = 0.1  #信息素的挥发速度
Q = 1
iter = 0
itermax = 250
etatable = 1.0/(distmat+np.diag([1e10]*numcity)) #启发函数矩阵,表示蚂蚁从城市i转移到矩阵j的期望程度
pheromonetable = np.ones((numcity,numcity)) # 信息素矩阵
pathtable = np.zeros((numant,numcity)).astype(int) #路径记录表
distmat = getdistmat(coordinates) #城市的距离矩阵
lengthaver = np.zeros(itermax) #各代路径的平均长度
lengthbest = np.zeros(itermax) #各代及其之前遇到的最佳路径长度
pathbest = np.zeros((itermax,numcity)) # 各代及其之前遇到的最佳路径长度
while iter < itermax:
  # 随机产生各个蚂蚁的起点城市
  if numant <= numcity:#城市数比蚂蚁数多
    pathtable[:,0] = np.random.permutation(range(0,numcity))[:numant]
  else: #蚂蚁数比城市数多,需要补足
    pathtable[:numcity,0] = np.random.permutation(range(0,numcity))[:]
    pathtable[numcity:,0] = np.random.permutation(range(0,numcity))[:numant-numcity]
  length = np.zeros(numant) #计算各个蚂蚁的路径距离
  for i in range(numant):
    visiting = pathtable[i,0] # 当前所在的城市
    #visited = set() #已访问过的城市,防止重复
    #visited.add(visiting) #增加元素
    unvisited = set(range(numcity))#未访问的城市
    unvisited.remove(visiting) #删除元素
    for j in range(1,numcity):#循环numcity-1次,访问剩余的numcity-1个城市
      #每次用轮盘法选择下一个要访问的城市
      listunvisited = list(unvisited)
      probtrans = np.zeros(len(listunvisited))
      for k in range(len(listunvisited)):
        probtrans[k] = np.power(pheromonetable[visiting][listunvisited[k]],alpha)\
            *np.power(etatable[visiting][listunvisited[k]],alpha)
      cumsumprobtrans = (probtrans/sum(probtrans)).cumsum()
      cumsumprobtrans -= np.random.rand()
      k = listunvisited[find(cumsumprobtrans>0)[0]] #下一个要访问的城市
      pathtable[i,j] = k
      unvisited.remove(k)
      #visited.add(k)
      length[i] += distmat[visiting][k]
      visiting = k
    length[i] += distmat[visiting][pathtable[i,0]] #蚂蚁的路径距离包括最后一个城市和第一个城市的距离
  #print length
  # 包含所有蚂蚁的一个迭代结束后,统计本次迭代的若干统计参数
  lengthaver[iter] = length.mean()
  if iter == 0:
    lengthbest[iter] = length.min()
    pathbest[iter] = pathtable[length.argmin()].copy()   
  else:
    if length.min() > lengthbest[iter-1]:
      lengthbest[iter] = lengthbest[iter-1]
      pathbest[iter] = pathbest[iter-1].copy()
    else:
      lengthbest[iter] = length.min()
      pathbest[iter] = pathtable[length.argmin()].copy()  
  # 更新信息素
  changepheromonetable = np.zeros((numcity,numcity))
  for i in range(numant):
    for j in range(numcity-1):
      changepheromonetable[pathtable[i,j]][pathtable[i,j+1]] += Q/distmat[pathtable[i,j]][pathtable[i,j+1]]
    changepheromonetable[pathtable[i,j+1]][pathtable[i,0]] += Q/distmat[pathtable[i,j+1]][pathtable[i,0]]
  pheromonetable = (1-rho)*pheromonetable + changepheromonetable
  iter += 1 #迭代次数指示器+1
  #观察程序执行进度,该功能是非必须的
  if (iter-1)%20==0: 
    print iter-1
# 做出平均路径长度和最优路径长度    
fig,axes = plt.subplots(nrows=2,ncols=1,figsize=(12,10))
axes[0].plot(lengthaver,'k',marker = u'')
axes[0].set_title('Average Length')
axes[0].set_xlabel(u'iteration')
axes[1].plot(lengthbest,'k',marker = u'')
axes[1].set_title('Best Length')
axes[1].set_xlabel(u'iteration')
fig.savefig('Average_Best.png',dpi=500,bbox_inches='tight')
plt.close()
#作出找到的最优路径图
bestpath = pathbest[-1]
plt.plot(coordinates[:,0],coordinates[:,1],'r.',marker=u'$\cdot$')
plt.xlim([-100,2000])
plt.ylim([-100,1500])
for i in range(numcity-1):#
  m,n = bestpath[i],bestpath[i+1]
  print m,n
  plt.plot([coordinates[m][0],coordinates[n][0]],[coordinates[m][1],coordinates[n][1]],'k')
plt.plot([coordinates[bestpath[0]][0],coordinates[n][0]],[coordinates[bestpath[0]][1],coordinates[n][1]],'b')
ax=plt.gca()
ax.set_title("Best Path")
ax.set_xlabel('X axis')
ax.set_ylabel('Y_axis')
plt.savefig('Best Path.png',dpi=500,bbox_inches='tight')
plt.close()

Python编程实现蚁群算法详解

Python编程实现蚁群算法详解

总结

以上就是本文关于Python编程实现蚁群算法详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:python实现图片处理和特征提取详解、python图像常规操作、python先序遍历二叉树问题等,有什么问题可以随时留言,小编会及时回复大家的。感谢朋友们对本站的支持!

Python 相关文章推荐
Python实用日期时间处理方法汇总
May 09 Python
Python中的推导式使用详解
Jun 03 Python
Django中的“惰性翻译”方法的相关使用
Jul 27 Python
python中set()函数简介及实例解析
Jan 09 Python
python距离测量的方法
Mar 06 Python
python函数式编程学习之yield表达式形式详解
Mar 25 Python
django rest framework 数据的查找、过滤、排序的示例
Jun 25 Python
selenium+python实现自动化登录的方法
Sep 04 Python
python使用numpy读取、保存txt数据的实例
Oct 14 Python
python 字典有序并写入json文件过程解析
Sep 30 Python
Python Tkinter模块 GUI 可视化实例
Nov 20 Python
sublime3之内网安装python插件Anaconda的流程
Nov 10 Python
Python编程实现粒子群算法(PSO)详解
Nov 13 #Python
人工智能最火编程语言 Python大战Java!
Nov 13 #Python
Python随机生成均匀分布在单位圆内的点代码示例
Nov 13 #Python
python、java等哪一门编程语言适合人工智能?
Nov 13 #Python
K-means聚类算法介绍与利用python实现的代码示例
Nov 13 #Python
python通过opencv实现批量剪切图片
Nov 13 #Python
flask + pymysql操作Mysql数据库的实例
Nov 13 #Python
You might like
乐信RP2100的电路分析和打磨
2021/03/02 无线电
php下实现在指定目录搜索指定类型文件的函数
2008/10/03 PHP
PHP中使用数组实现堆栈数据结构的代码
2012/02/05 PHP
使用PHP和HTML5 FormData实现无刷新文件上传教程
2014/09/06 PHP
php采用ajax数据提交post与post常见方法总结
2014/11/10 PHP
php生成PDF格式文件并且加密
2015/06/22 PHP
php mysqli查询语句返回值类型实例分析
2016/06/29 PHP
laravel实现分页样式替换示例代码(增加首、尾页)
2017/09/22 PHP
JS图片根据鼠标滚动延时加载的实例代码
2013/07/13 Javascript
jquery通过扩展select控件实现支持enter或focus选择的方法
2015/11/19 Javascript
JavaScript与java语言有什么不同
2016/09/22 Javascript
JavaScript实现拖拽元素对齐到网格(每次移动固定距离)
2016/11/30 Javascript
vue 动态修改a标签的样式的方法
2018/01/18 Javascript
详解React项目的服务端渲染改造(koa2+webpack3.11)
2018/03/19 Javascript
JS正则表达式常见用法实例详解
2018/06/19 Javascript
详解Next.js页面渲染的优化方案
2019/01/27 Javascript
vue实现设置载入动画和初始化页面动画效果
2019/10/28 Javascript
OpenLayers实现图层切换控件
2020/09/25 Javascript
python实现ftp客户端示例分享
2014/02/17 Python
python原始套接字编程示例分享
2014/02/21 Python
python:socket传输大文件示例
2017/01/18 Python
python3.4下django集成使用xadmin后台的方法
2017/08/15 Python
详谈python read readline readlines的区别
2017/09/22 Python
Flask框架URL管理操作示例【基于@app.route】
2018/07/23 Python
pyqt5 使用label控件实时显示时间的实例
2019/06/14 Python
从numpy数组中取出满足条件的元素示例
2019/11/26 Python
python 字典访问的三种方法小结
2019/12/05 Python
Python selenium页面加载慢超时的解决方案
2020/03/18 Python
python os模块在系统管理中的应用
2020/06/22 Python
linux系统下pip升级报错的解决方法
2021/01/31 Python
canvas使用注意点总结
2013/07/19 HTML / CSS
领导班子奢靡之风查摆问题及整改措施
2014/09/27 职场文书
网络管理员岗位职责
2015/02/12 职场文书
廉洁自律准则学习心得体会
2016/01/13 职场文书
外出培训学习心得体会
2016/01/18 职场文书
Java基础之线程锁相关知识总结
2021/06/30 Java/Android