tensorflow入门:tfrecord 和tf.data.TFRecordDataset的使用


Posted in Python onJanuary 20, 2020

1.创建tfrecord

tfrecord支持写入三种格式的数据:string,int64,float32,以列表的形式分别通过tf.train.BytesList、tf.train.Int64List、tf.train.FloatList写入tf.train.Feature,如下所示:

tf.train.Feature(bytes_list=tf.train.BytesList(value=[feature.tostring()])) #feature一般是多维数组,要先转为list
tf.train.Feature(int64_list=tf.train.Int64List(value=list(feature.shape))) #tostring函数后feature的形状信息会丢失,把shape也写入
tf.train.Feature(float_list=tf.train.FloatList(value=[label]))

通过上述操作,以dict的形式把要写入的数据汇总,并构建tf.train.Features,然后构建tf.train.Example,如下:

def get_tfrecords_example(feature, label):
 tfrecords_features = {}
 feat_shape = feature.shape
 tfrecords_features['feature'] = tf.train.Feature(bytes_list=tf.train.BytesList(value=[feature.tostring()]))
 tfrecords_features['shape'] = tf.train.Feature(int64_list=tf.train.Int64List(value=list(feat_shape)))
 tfrecords_features['label'] = tf.train.Feature(float_list=tf.train.FloatList(value=label))
 return tf.train.Example(features=tf.train.Features(feature=tfrecords_features))

把创建的tf.train.Example序列化下,便可通过tf.python_io.TFRecordWriter写入tfrecord文件,如下:

tfrecord_wrt = tf.python_io.TFRecordWriter('xxx.tfrecord') #创建tfrecord的writer,文件名为xxx
exmp = get_tfrecords_example(feats[inx], labels[inx]) #把数据写入Example
exmp_serial = exmp.SerializeToString()  #Example序列化
tfrecord_wrt.write(exmp_serial)  #写入tfrecord文件
tfrecord_wrt.close()  #写完后关闭tfrecord的writer

代码汇总:

import tensorflow as tf
from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_sets
 
mnist = read_data_sets("MNIST_data/", one_hot=True)
#把数据写入Example
def get_tfrecords_example(feature, label):
 tfrecords_features = {}
 feat_shape = feature.shape
 tfrecords_features['feature'] = tf.train.Feature(bytes_list=tf.train.BytesList(value=[feature.tostring()]))
 tfrecords_features['shape'] = tf.train.Feature(int64_list=tf.train.Int64List(value=list(feat_shape)))
 tfrecords_features['label'] = tf.train.Feature(float_list=tf.train.FloatList(value=label))
 return tf.train.Example(features=tf.train.Features(feature=tfrecords_features))
#把所有数据写入tfrecord文件
def make_tfrecord(data, outf_nm='mnist-train'):
 feats, labels = data
 outf_nm += '.tfrecord'
 tfrecord_wrt = tf.python_io.TFRecordWriter(outf_nm)
 ndatas = len(labels)
 for inx in range(ndatas):
 exmp = get_tfrecords_example(feats[inx], labels[inx])
 exmp_serial = exmp.SerializeToString()
 tfrecord_wrt.write(exmp_serial)
 tfrecord_wrt.close()
 
import random
nDatas = len(mnist.train.labels)
inx_lst = range(nDatas)
random.shuffle(inx_lst)
random.shuffle(inx_lst)
ntrains = int(0.85*nDatas)
 
# make training set
data = ([mnist.train.images[i] for i in inx_lst[:ntrains]], \
 [mnist.train.labels[i] for i in inx_lst[:ntrains]])
make_tfrecord(data, outf_nm='mnist-train')
 
# make validation set
data = ([mnist.train.images[i] for i in inx_lst[ntrains:]], \
 [mnist.train.labels[i] for i in inx_lst[ntrains:]])
make_tfrecord(data, outf_nm='mnist-val')
 
# make test set
data = (mnist.test.images, mnist.test.labels)
make_tfrecord(data, outf_nm='mnist-test')

2.tfrecord文件的使用:tf.data.TFRecordDataset

从tfrecord文件创建TFRecordDataset:

dataset = tf.data.TFRecordDataset('xxx.tfrecord')

解析tfrecord文件的每条记录,即序列化后的tf.train.Example;使用tf.parse_single_example来解析:

feats = tf.parse_single_example(serial_exmp, features=data_dict)

其中,data_dict是一个dict,包含的key是写入tfrecord文件时用的key,相应的value则是tf.FixedLenFeature([], tf.string)、tf.FixedLenFeature([], tf.int64)、tf.FixedLenFeature([], tf.float32),分别对应不同的数据类型,汇总即有:

def parse_exmp(serial_exmp):  #label中[10]是因为一个label是一个有10个元素的列表,shape中的[x]为shape的长度
feats = tf.parse_single_example(serial_exmp, features={'feature':tf.FixedLenFeature([], tf.string),\
 'label':tf.FixedLenFeature([10],tf.float32), 'shape':tf.FixedLenFeature([x], tf.int64)})
image = tf.decode_raw(feats['feature'], tf.float32)
label = feats['label']
shape = tf.cast(feats['shape'], tf.int32)
return image, label, shape

解析tfrecord文件中的所有记录,使用dataset的map方法,如下:

dataset = dataset.map(parse_exmp)

map方法可以接受任意函数以对dataset中的数据进行处理;另外,可使用repeat、shuffle、batch方法对dataset进行重复、混洗、分批;用repeat复制dataset以进行多个epoch;如下:

dataset = dataset.repeat(epochs).shuffle(buffer_size).batch(batch_size)

解析完数据后,便可以取出数据进行使用,通过创建iterator来进行,如下:

iterator = dataset.make_one_shot_iterator()
batch_image, batch_label, batch_shape = iterator.get_next()

要把不同dataset的数据feed进行模型,则需要先创建iterator handle,即iterator placeholder,如下:

handle = tf.placeholder(tf.string, shape=[])
iterator = tf.data.Iterator.from_string_handle(handle, \
 dataset_train.output_types, dataset_train.output_shapes)
image, label, shape = iterator.get_next()

然后为各个dataset创建handle,以feed_dict传入placeholder,如下:

with tf.Session() as sess:
 handle_train, handle_val, handle_test = sess.run(\
 [x.string_handle() for x in [iter_train, iter_val, iter_test]])
    sess.run([loss, train_op], feed_dict={handle: handle_train}

汇总:

import tensorflow as tf
 
train_f, val_f, test_f = ['mnist-%s.tfrecord'%i for i in ['train', 'val', 'test']]
 
def parse_exmp(serial_exmp):
 feats = tf.parse_single_example(serial_exmp, features={'feature':tf.FixedLenFeature([], tf.string),\
 'label':tf.FixedLenFeature([10],tf.float32), 'shape':tf.FixedLenFeature([], tf.int64)})
 image = tf.decode_raw(feats['feature'], tf.float32)
 label = feats['label']
 shape = tf.cast(feats['shape'], tf.int32)
 return image, label, shape
 
 
def get_dataset(fname):
 dataset = tf.data.TFRecordDataset(fname)
 return dataset.map(parse_exmp) # use padded_batch method if padding needed
 
epochs = 16
batch_size = 50 # when batch_size can't be divided by nDatas, like 56,
 # there will be a batch data with nums less than batch_size
 
# training dataset
nDatasTrain = 46750
dataset_train = get_dataset(train_f)
dataset_train = dataset_train.repeat(epochs).shuffle(1000).batch(batch_size) # make sure repeat is ahead batch
  # this is different from dataset.shuffle(1000).batch(batch_size).repeat(epochs)
  # the latter means that there will be a batch data with nums less than batch_size for each epoch
  # if when batch_size can't be divided by nDatas.
nBatchs = nDatasTrain*epochs//batch_size
 
# evalation dataset
nDatasVal = 8250
dataset_val = get_dataset(val_f)
dataset_val = dataset_val.batch(nDatasVal).repeat(nBatchs//100*2)
 
# test dataset
nDatasTest = 10000
dataset_test = get_dataset(test_f)
dataset_test = dataset_test.batch(nDatasTest)
 
# make dataset iterator
iter_train = dataset_train.make_one_shot_iterator()
iter_val  = dataset_val.make_one_shot_iterator()
iter_test  = dataset_test.make_one_shot_iterator()
 
# make feedable iterator
handle = tf.placeholder(tf.string, shape=[])
iterator = tf.data.Iterator.from_string_handle(handle, \
 dataset_train.output_types, dataset_train.output_shapes)
x, y_, _ = iterator.get_next()
train_op, loss, eval_op = model(x, y_)
init = tf.initialize_all_variables()
 
# summary
logdir = './logs/m4d2a'
def summary_op(datapart='train'):
 tf.summary.scalar(datapart + '-loss', loss)
 tf.summary.scalar(datapart + '-eval', eval_op)
 return tf.summary.merge_all() 
summary_op_train = summary_op()
summary_op_test = summary_op('val')
 
with tf.Session() as sess:
 sess.run(init)
 handle_train, handle_val, handle_test = sess.run(\
 [x.string_handle() for x in [iter_train, iter_val, iter_test]])
    _, cur_loss, cur_train_eval, summary = sess.run([train_op, loss, eval_op, summary_op_train], \
  feed_dict={handle: handle_train, keep_prob: 0.5} )
    cur_val_loss, cur_val_eval, summary = sess.run([loss, eval_op, summary_op_test], \
  feed_dict={handle: handle_val, keep_prob: 1.0})

3.mnist实验

import tensorflow as tf
 
train_f, val_f, test_f = ['mnist-%s.tfrecord'%i for i in ['train', 'val', 'test']]
 
def parse_exmp(serial_exmp):
 feats = tf.parse_single_example(serial_exmp, features={'feature':tf.FixedLenFeature([], tf.string),\
 'label':tf.FixedLenFeature([10],tf.float32), 'shape':tf.FixedLenFeature([], tf.int64)})
 image = tf.decode_raw(feats['feature'], tf.float32)
 label = feats['label']
 shape = tf.cast(feats['shape'], tf.int32)
 return image, label, shape
 
 
def get_dataset(fname):
 dataset = tf.data.TFRecordDataset(fname)
 return dataset.map(parse_exmp) # use padded_batch method if padding needed
 
epochs = 16
batch_size = 50 # when batch_size can't be divided by nDatas, like 56,
 # there will be a batch data with nums less than batch_size
 
# training dataset
nDatasTrain = 46750
dataset_train = get_dataset(train_f)
dataset_train = dataset_train.repeat(epochs).shuffle(1000).batch(batch_size) # make sure repeat is ahead batch
  # this is different from dataset.shuffle(1000).batch(batch_size).repeat(epochs)
  # the latter means that there will be a batch data with nums less than batch_size for each epoch
  # if when batch_size can't be divided by nDatas.
nBatchs = nDatasTrain*epochs//batch_size
 
# evalation dataset
nDatasVal = 8250
dataset_val = get_dataset(val_f)
dataset_val = dataset_val.batch(nDatasVal).repeat(nBatchs//100*2)
 
# test dataset
nDatasTest = 10000
dataset_test = get_dataset(test_f)
dataset_test = dataset_test.batch(nDatasTest)
 
# make dataset iterator
iter_train = dataset_train.make_one_shot_iterator()
iter_val  = dataset_val.make_one_shot_iterator()
iter_test  = dataset_test.make_one_shot_iterator()
 
# make feedable iterator, i.e. iterator placeholder
handle = tf.placeholder(tf.string, shape=[])
iterator = tf.data.Iterator.from_string_handle(handle, \
 dataset_train.output_types, dataset_train.output_shapes)
x, y_, _ = iterator.get_next()
 
# cnn
x_image = tf.reshape(x, [-1,28,28,1])
w_init = tf.truncated_normal_initializer(stddev=0.1, seed=9)
b_init = tf.constant_initializer(0.1)
cnn1 = tf.layers.conv2d(x_image, 32, (5,5), padding='same', activation=tf.nn.relu, \
 kernel_initializer=w_init, bias_initializer=b_init)
mxpl1 = tf.layers.max_pooling2d(cnn1, 2, strides=2, padding='same')
cnn2 = tf.layers.conv2d(mxpl1, 64, (5,5), padding='same', activation=tf.nn.relu, \
 kernel_initializer=w_init, bias_initializer=b_init)
mxpl2 = tf.layers.max_pooling2d(cnn2, 2, strides=2, padding='same')
mxpl2_flat = tf.reshape(mxpl2, [-1,7*7*64])
fc1 = tf.layers.dense(mxpl2_flat, 1024, activation=tf.nn.relu, \
 kernel_initializer=w_init, bias_initializer=b_init)
keep_prob = tf.placeholder('float')
fc1_drop = tf.nn.dropout(fc1, keep_prob)
logits = tf.layers.dense(fc1_drop, 10, kernel_initializer=w_init, bias_initializer=b_init)
 
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y_))
optmz = tf.train.AdamOptimizer(1e-4)
train_op = optmz.minimize(loss)
 
def get_eval_op(logits, labels):
 corr_prd = tf.equal(tf.argmax(logits,1), tf.argmax(labels,1))
 return tf.reduce_mean(tf.cast(corr_prd, 'float'))
eval_op = get_eval_op(logits, y_)
 
init = tf.initialize_all_variables()
 
# summary
logdir = './logs/m4d2a'
def summary_op(datapart='train'):
 tf.summary.scalar(datapart + '-loss', loss)
 tf.summary.scalar(datapart + '-eval', eval_op)
 return tf.summary.merge_all() 
summary_op_train = summary_op()
summary_op_val = summary_op('val')
 
# whether to restore or not
ckpts_dir = 'ckpts/'
ckpt_nm = 'cnn-ckpt'
saver = tf.train.Saver(max_to_keep=50) # defaults to save all variables, using dict {'x':x,...} to save specified ones.
restore_step = ''
start_step = 0
train_steps = nBatchs
best_loss = 1e6
best_step = 0
 
# import os
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# config = tf.ConfigProto() 
# config.gpu_options.per_process_gpu_memory_fraction = 0.9
# config.gpu_options.allow_growth=True # allocate when needed
# with tf.Session(config=config) as sess:
with tf.Session() as sess:
 sess.run(init)
 handle_train, handle_val, handle_test = sess.run(\
 [x.string_handle() for x in [iter_train, iter_val, iter_test]])
 if restore_step:
 ckpt = tf.train.get_checkpoint_state(ckpts_dir)
 if ckpt and ckpt.model_checkpoint_path: # ckpt.model_checkpoint_path means the latest ckpt
  if restore_step == 'latest':
  ckpt_f = tf.train.latest_checkpoint(ckpts_dir)
  start_step = int(ckpt_f.split('-')[-1]) + 1
  else:
  ckpt_f = ckpts_dir+ckpt_nm+'-'+restore_step
  print('loading wgt file: '+ ckpt_f)
  saver.restore(sess, ckpt_f) 
 summary_wrt = tf.summary.FileWriter(logdir,sess.graph)
 if restore_step in ['', 'latest']:
 for i in range(start_step, train_steps):
  _, cur_loss, cur_train_eval, summary = sess.run([train_op, loss, eval_op, summary_op_train], \
   feed_dict={handle: handle_train, keep_prob: 0.5} )
  # log to stdout and eval validation set
  if i % 100 == 0 or i == train_steps-1:
  saver.save(sess, ckpts_dir+ckpt_nm, global_step=i) # save variables
  summary_wrt.add_summary(summary, global_step=i)
  cur_val_loss, cur_val_eval, summary = sess.run([loss, eval_op, summary_op_val], \
   feed_dict={handle: handle_val, keep_prob: 1.0})
  if cur_val_loss < best_loss:
   best_loss = cur_val_loss
   best_step = i
  summary_wrt.add_summary(summary, global_step=i)
  print 'step %5d: loss %.5f, acc %.5f --- loss val %0.5f, acc val %.5f'%(i, \
   cur_loss, cur_train_eval, cur_val_loss, cur_val_eval)
  # sess.run(init_train)
 with open(ckpts_dir+'best.step','w') as f:
  f.write('best step is %d\n'%best_step)
 print 'best step is %d'%best_step
 # eval test set
 test_loss, test_eval = sess.run([loss, eval_op], feed_dict={handle: handle_test, keep_prob: 1.0})
 print 'eval test: loss %.5f, acc %.5f'%(test_loss, test_eval)

实验结果:

tensorflow入门:tfrecord 和tf.data.TFRecordDataset的使用

以上这篇tensorflow入门:tfrecord 和tf.data.TFRecordDataset的使用就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
用python分割TXT文件成4K的TXT文件
May 23 Python
python网页请求urllib2模块简单封装代码
Feb 07 Python
python中迭代器(iterator)用法实例分析
Apr 29 Python
在Linux系统上安装Python的Scrapy框架的教程
Jun 11 Python
Python制作爬虫抓取美女图
Jan 20 Python
Python编程之字符串模板(Template)用法实例分析
Jul 22 Python
基于python3 OpenCV3实现静态图片人脸识别
May 25 Python
详解Python下Flask-ApScheduler快速指南
Nov 04 Python
对python中的try、except、finally 执行顺序详解
Feb 18 Python
pytorch查看模型weight与grad方式
Jun 24 Python
Python3中小括号()、中括号[]、花括号{}的区别详解
Nov 15 Python
如何利用Matlab制作一款真正的拼图小游戏
May 11 Python
tensorflow入门:TFRecordDataset变长数据的batch读取详解
Jan 20 #Python
python如何通过pyqt5实现进度条
Jan 20 #Python
python super用法及原理详解
Jan 20 #Python
tensorflow 变长序列存储实例
Jan 20 #Python
在tensorflow中实现去除不足一个batch的数据
Jan 20 #Python
Tensorflow实现在训练好的模型上进行测试
Jan 20 #Python
Python线程条件变量Condition原理解析
Jan 20 #Python
You might like
全国FM电台频率大全 - 13 福建省
2020/03/11 无线电
重量级动漫纷纷停播!唯独OVERLORD第四季正在英魂之刃继续更新
2020/05/06 日漫
NOD32 v2.70.32 简体中文封装版 提供下载了
2007/02/27 PHP
PHP设置头信息及取得返回头信息的方法
2016/01/25 PHP
浅谈Laravel模板实体转义带来的坑
2019/10/22 PHP
JavaScript 参数中的数组展开 [译]
2012/09/21 Javascript
js中判断对象是否为空的三种实现方法
2013/12/23 Javascript
Jquery 过滤器(first,last,not,even,odd)的使用
2014/01/22 Javascript
js遍历子节点子元素附属性及方法
2014/08/19 Javascript
jQuery与getJson结合的用法实例
2015/08/07 Javascript
基于jQuery Bar Indicator 插件实现进度条展示效果
2015/09/30 Javascript
使用ionic在首页新闻中应用到的跑马灯效果的实现方法
2017/02/13 Javascript
js实现图片左右滚动效果
2017/02/27 Javascript
mpvue小程序仿qq左滑置顶删除组件
2018/08/03 Javascript
微信小程序之 catalog 切换实现解析
2019/09/12 Javascript
将RGB值转换为灰度值的简单算法
2019/10/09 Javascript
基于Vant UI框架实现时间段选择器
2020/12/24 Javascript
[04:26]2014DOTA2西雅图国际邀请赛 总决赛TOPPLAY
2014/07/22 DOTA
Python中列表的一些基本操作知识汇总
2015/05/20 Python
python+requests+unittest API接口测试实例(详解)
2017/06/10 Python
解决phantomjs截图失败,phantom.exit位置的问题
2018/05/17 Python
关于pymysql模块的使用以及代码详解
2019/09/01 Python
Python lxml模块的基本使用方法分析
2019/12/21 Python
Django 如何使用日期时间选择器规范用户的时间输入示例代码详解
2020/05/22 Python
Html5插件教程之添加浏览器放大镜效果的商品橱窗
2016/01/07 HTML / CSS
蒙蒂塞罗商店:Monticello Shop
2018/11/25 全球购物
个性化皮包、小袋、生活配件:Mon Purse
2019/03/26 全球购物
美国优质马术服装购买网站:Breeches.com
2019/12/16 全球购物
Trench London官方网站:高级风衣和意大利皮夹克
2020/07/11 全球购物
一道Delphi面试题
2016/10/28 面试题
《临死前的严监生》教学反思
2014/02/13 职场文书
年终总结会主持词
2014/03/25 职场文书
实习计划书范文
2015/01/16 职场文书
重阳节活动主持词
2015/07/04 职场文书
2016清明节森林防火广播稿
2015/12/17 职场文书
【超详细】八大排序算法的各项比较以及各自特点
2021/03/31 Python