使用pytorch和torchtext进行文本分类的实例


Posted in Python onJanuary 08, 2020

文本分类是NLP领域的较为容易的入门问题,本文记录我自己在做文本分类任务以及复现相关论文时的基本流程,绝大部分操作都使用了torch和torchtext两个库。

1. 文本数据预处理

首先数据存储在三个csv文件中,分别是train.csv,valid.csv,test.csv,第一列存储的是文本数据,例如情感分类问题经常是用户的评论review,例如imdb或者amazon数据集。第二列是情感极性polarity,N分类问题的话就有N个值,假设值得范围是0~N-1。

下面是很常见的文本预处理流程,英文文本的话不需要分词,直接按空格split就行了,这里只会主要说说第4点。

1、去除非文本部分

2、分词

3、去除停用词

4、对英文单词进行词干提取(stemming)和词型还原(lemmatization)

5、转为小写

6、特征处理

Bag of Words

Tf-idf

N-gram

Word2vec

词干提取和词型还原

from nltk.stem import SnowballStemmer
stemmer = SnowballStemmer("english") # 选择语言
from nltk.stem import WordNetLemmatizer 
wnl = WordNetLemmatizer()

SnowballStemmer较为激进,转换有可能出现错误,这里较为推荐使用WordNetLemmatizer,它一般只在非常肯定的情况下才进行转换,否则会返回原来的单词。

stemmer.stem('knives')
# knive
wnl.lemmatize('knives')
# knife

因为我没有系统学习和研究过NLTK的代码,所以就不多说了,有兴趣的可以自己去阅读NLTK的源码。

2. 使用torchtext加载文本数据

本节主要是用的模块是torchtext里的data模块,处理的数据同上一节所描述。

首先定义一个tokenizer用来处理文本,比如分词,小写化,如果你已经根据上一节的词干提取和词型还原的方法处理过文本里的每一个单词后可以直接分词就够了。

tokenize = lambda x: x.split()

或者也可以更保险点,使用spacy库,不过就肯定更耗费时间了。

import spacy

spacy_en = spacy.load('en')
def tokenizer(text):
 return [toke.text for toke in spacy_en.tokenizer(text)]

然后要定义Field,至于Field是啥,你可以简单地把它理解为一个能够加载、预处理和存储文本数据和标签的对象。我们可以用它根据训练数据来建立词表,加载预训练的Glove词向量等等。

def DataLoader():
 tokenize = lambda x: x.split()
 # 用户评论,include_lengths设为True是为了方便之后使用torch的pack_padded_sequence
 REVIEW = data.Field(sequential=True,tokenize=tokenize, include_lengths=True)
 # 情感极性
 POLARITY = data.LabelField(sequential=False, use_vocab=False, dtype = torch.long)
 # 假如train.csv文件并不是只有两列,比如1、3列是review和polarity,2列是我们不需要的数据,
 # 那么就要添加一个全是None的元组, fields列表存储的Field的顺序必须和csv文件中每一列的顺序对应,
 # 否则review可能就加载到polarity Field里去了
 fields = [('review', REVIEW), (None, None), ('polarity', POLARITY)]
 
 # 加载train,valid,test数据
 train_data, valid_data, test_data = data.TabularDataset.splits(
         path = 'amazon',
         train = 'train.csv',
      validation = 'valid.csv',
      test = 'test.csv',
         format = 'csv',
         fields = fields,
         skip_header = False # 是否跳过文件的第一行
 )
 return REVIEW, POLARITY, train_data

加载完数据可以开始建词表。如果本地没有预训练的词向量文件,在运行下面的代码时会自动下载到当前文件夹下的'.vector_cache'文件夹内,如果本地已经下好了,可以用Vectors指定文件名name,路径cache,还可以使用Glove。

from torchtext.vocab import Vectors, Glove
import torch

REVIEW, POLARITY, train_data = DataLoader()
# vectors = Vectors(name='glove.6B.300d.txt', cache='.vector_cache')
REVIEW.build_vocab(train_data, # 建词表是用训练集建,不要用验证集和测试集
     max_size=400000, # 单词表容量
     vectors='glove.6B.300d', # 还有'glove.840B.300d'已经很多可以选
     unk_init=torch.Tensor.normal_ # 初始化train_data中不存在预训练词向量词表中的单词
)

# print(REVIEW.vocab.freqs.most_common(20)) 数据集里最常出现的20个单词
# print(REVIEW.vocab.itos[:10])  列表 index to word
# print(REVIEW.vocab.stoi)    字典 word to index

接着就是把预训练词向量加载到model的embedding weight里去了。

pretrained_embeddings = REVIEW.vocab.vectors
model.embedding.weight.data.copy_(pretrained_embeddings)
UNK_IDX = REVIEW.vocab.stoi[REVIEW.unk_token]
PAD_IDX = REVIEW.vocab.stoi[REVIEW.pad_token]
# 因为预训练的权重的unk和pad的词向量不是在我们的数据集语料上训练得到的,所以最好置零
model.embedding.weight.data[UNK_IDX] = torch.zeros(EMBEDDING_DIM)
model.embedding.weight.data[PAD_IDX] = torch.zeros(EMBEDDING_DIM)

然后用torchtext的迭代器来批量加载数据,torchtext.data里的BucketIterator非常好用,它可以把长度相近的文本数据尽量都放到一个batch里,这样最大程度地减少padding,数据就少了很多无意义的0,也减少了矩阵计算量,也许还能对最终准确度有帮助(误)?我凭直觉猜的,没有做实验对比过,但是至少能加速训练迭代应该是没有疑问的,如果哪天我有钱了买了台好点的服务器做完实验再来补充。

sort_within_batch设为True的话,一个batch内的数据就会按sort_key的排列规则降序排列,sort_key是排列的规则,这里使用的是review的长度,即每条用户评论所包含的单词数量。

train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits(
            (train_data, valid_data, test_data),
            batch_size=32,
            sort_within_batch=True,
            sort_key = lambda x:len(x.review),
            device=torch.device('cpu'))

最后就是加载数据喂给模型了。

for batch in train_iterator:
 # 因为REVIEW Field的inclue_lengths为True,所以还会包含一个句子长度的Tensor
 review, review_len = batch.review 
 # review.size = (seq_length, batch_size) , review_len.size = (batch_size, )
 polarity = batch.polarity
 # polarity.size = (batch_size, )
 predictions = model(review, review_lengths)
 loss = criterion(predictions, polarity) # criterion = nn.CrossEntropyLoss()

3. 使用pytorch写一个LSTM情感分类器

下面是我简略写的一个模型,仅供参考

import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pack_padded_sequence
import torch


class LSTM(nn.Module):

 def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim,
     n_layers, bidirectional, dropout, pad_idx):
  super(LSTM, self).__init__()
  self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=pad_idx)
  self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers=n_layers,
       bidirectional=bidirectional, dropout=dropout)
  self.Ws = nn.Parameter(torch.Tensor(hidden_dim, output_dim))
  self.bs = nn.Parameter(torch.zeros((output_dim, )))
  nn.init.uniform_(self.Ws, -0.1, 0.1)
  nn.init.uniform_(self.bs, -0.1, 0.1)
  self.dropout = nn.Dropout(p=0.5)

 def forward(self, x, x_len):
  x = self.embedding(x)
  x = pack_padded_sequence(x, x_len)
  H, (h_n, c_n) = self.lstm(x)
  h_n = self.dropout(h_n)
  h_n = torch.squeeze(h_n)
  res = torch.matmul(h_n, self.Ws) + self.bs
  y = F.softmax(res, dim=1)
  # y.size(batch_size, output_dim)
  return y

训练函数

def train(model, iterator, optimizer, criterion):
 epoch_loss = 0
 num_sample = 0
 correct = 0

 model.train()
 for batch in iterator:
  optimizer.zero_grad()
  review, review_lengths = batch.review
  polarity = batch.polarity
  predictions = model(review, review_lengths)
  correct += torch.sum(torch.argmax(preds, dim=1) == polarity)
  loss = criterion(predictions, polarity)
  loss.backward()
  epoch_loss += loss.item()
  num_sample += len(batch)
  optimizer.step()

 return epoch_loss / num_sample, correct.float() / num_sample

if __name__ == '__main__':
 for epoch in range(N_EPOCHS):
 train_loss, acc = train(model, train_iter, optimizer, criterion)
 print(f'\tTrain Loss: {train_loss:.3f} | Train Acc: {acc* 100:.2f}%')

注意事项和遇到的一些坑

文本情感分类需不需要去除停用词?

应该是不用的,否则acc有可能下降。

data.TabularDataset.splits虽然好用,但是如果你只想加载训练集,这时候如果直接不给validation和test参数赋值,那么其他代码和原来一样,比如这样

train_data = data.TabularDataset.splits(
         path = '',
         train = 'train.csv',
         format = 'csv',
         fields = fields,
         skip_header = False # 是否跳过文件的第一行
)

那么底下你一定会报错,因为data.TabularDataset.splits返回的是一个元组,也就是如果是训练验证测试三个文件都给了函数,就返回(train_data, valid_data, test_data),这时候你用三个变量去接受函数返回值当然没问题,元组会自动拆包。

当只给函数一个文件train.csv时,函数返回的是(train_data)而非train_data,因此正确的写法应该如下

train_data = data.TabularDataset.splits(
         path = '',
         train = 'train.csv',
         format = 'csv',
         fields = fields,
         skip_header = False # 是否跳过文件的第一行
)[0] # 注意这里的切片,选择元组的第一个也是唯一一个元素赋给train_data

同理data.BucketIterator.splits也有相同的问题,它不但返回的是元组,它的参数datasets要求也是以元组形式,即(train_data, valid_data, test_data)进行赋值,否则在下面的运行中也会出现各种各样奇怪的问题。

如果你要生成两个及以上的迭代器,那么没问题,直接照上面写就完事了。

如果你只要生成train_iterator,那么正确的写法应该是下面这样

train_iter = data.BucketIterator(
   train_data,
   batch_size=32,
   sort_key=lambda x:len(x.review),
   sort_within_batch=True,
   shuffle=True # 训练集需要shuffle,但因为验证测试集不需要
    # 可以生成验证和测试集的迭代器直接用data.iterator.Iterator类就足够了
)

出现的问题 x = pack_padded_sequence(x, x_len) 当数据集有长度为0的句子时, 就会后面报错

Adagrad效果比Adam好的多

4. 总结

不仅仅是NLP领域,在各大顶会中,越来越多的学者选择使用Pytorch而非TensorFlow,主要原因就是因为它的易用性,torchtext和pytorch搭配起来是非常方便的NLP工具,可以大大缩短文本预处理,加载数据的时间。

我本人之前用过tf 1.x以及keras,最终拥抱了Pytorch,也是因为它与Numpy极其类似的用法,更Pythonic的代码,清晰的源码让我在遇到bug时能一步一步找到问题所在,动态图让人能随时看到输出的Tensor的全部信息,这些都是Pytorch的优势。

现在tf 2.0也在不断改进,有人笑称tf越来越像pytorch了,其实pytorch也在不断向tf学习,在工业界,tf仍然处于王者地位,不知道未来pytorch能不能在工业界也与tf平分秋色,甚至更胜一筹呢?

以上这篇使用pytorch和torchtext进行文本分类的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
详解Python的Django框架中的Cookie相关处理
Jul 22 Python
python模块简介之有序字典(OrderedDict)
Dec 01 Python
Python 数据结构之堆栈实例代码
Jan 22 Python
python如何定义带参数的装饰器
Mar 20 Python
python切片及sys.argv[]用法详解
May 25 Python
3个用于数据科学的顶级Python库
Sep 29 Python
记一次python 内存泄漏问题及解决过程
Nov 29 Python
python3实现小球转动抽奖小游戏
Apr 15 Python
python如何统计代码运行的时长
Jul 24 Python
python使用paramiko模块通过ssh2协议对交换机进行配置的方法
Jul 25 Python
使用pytorch搭建AlexNet操作(微调预训练模型及手动搭建)
Jan 18 Python
python如何控制进程或者线程的个数
Oct 16 Python
python爬虫爬取监控教务系统的思路详解
Jan 08 #Python
Pytorch实现基于CharRNN的文本分类与生成示例
Jan 08 #Python
python实现单目标、多目标、多尺度、自定义特征的KCF跟踪算法(实例代码)
Jan 08 #Python
Pytorch实现神经网络的分类方式
Jan 08 #Python
python 爬取古诗文存入mysql数据库的方法
Jan 08 #Python
基于python3抓取pinpoint应用信息入库
Jan 08 #Python
Python PyInstaller安装和使用教程详解
Jan 08 #Python
You might like
PHP源码分析之变量的存储过程分解
2014/07/03 PHP
php cli配置文件问题分析
2015/10/15 PHP
php实现的SSO单点登录系统接入功能示例分析
2016/10/12 PHP
提示$ is not defined错误分析及解决
2013/04/09 Javascript
jquery prop的使用介绍及与attr的区别
2013/12/19 Javascript
Jquery中ajax方法data参数的用法小结
2014/02/12 Javascript
Javascript中的getUTCDay()方法使用详解
2015/06/10 Javascript
js实现文字滚动效果
2016/03/03 Javascript
jQuery通过deferred对象管理ajax异步
2016/05/20 Javascript
Javascript类型系统之String字符串类型详解
2016/06/21 Javascript
AngularJS实现DOM元素的显示与隐藏功能
2016/11/22 Javascript
彻底搞懂JavaScript中的apply和call方法(必看)
2017/09/18 Javascript
Vue.js 2.5新特性介绍(推荐)
2017/10/24 Javascript
vue仿element实现分页器效果
2018/09/13 Javascript
详解一个基于套接字实现长连接的express
2019/03/28 Javascript
Vue.js路由实现选项卡简单实例
2019/07/24 Javascript
原生JavaScript实现刮刮乐
2020/09/29 Javascript
python使用tensorflow保存、加载和使用模型的方法
2018/01/31 Python
在Pycharm中项目解释器与环境变量的设置方法
2018/10/29 Python
python 内置模块详解
2019/01/01 Python
值得收藏的10道python 面试题
2019/04/15 Python
浅谈Python编程中3个常用的数据结构和算法
2019/04/30 Python
Python实现的插入排序,冒泡排序,快速排序,选择排序算法示例
2019/05/04 Python
Python 处理文件的几种方式
2019/08/23 Python
Python 随机生成测试数据的模块:faker基本使用方法详解
2020/04/09 Python
传统HTML页面实现模块化加载的方法
2018/10/15 HTML / CSS
美国宠物用品网站:Value Pet Supplies
2018/03/17 全球购物
艺术教育实施方案
2014/05/03 职场文书
歌颂祖国演讲稿
2014/05/04 职场文书
乡镇党的群众路线教育实践活动领导班子对照检查材料
2014/09/25 职场文书
债务授权委托书范本
2014/10/17 职场文书
小学语文教师年度考核个人总结
2015/02/05 职场文书
入党积极分子群众意见
2015/06/01 职场文书
团队拓展训练感想
2015/08/07 职场文书
Nginx禁止ip访问或非法域名访问
2022/04/07 Servers
Zabbix对Kafka topic积压数据监控的解决方案
2022/07/07 Servers