numpy创建单位矩阵和对角矩阵的实例


Posted in Python onNovember 29, 2019

在学习linear regression时经常处理的数据一般多是矩阵或者n维向量的数据形式,所以必须对矩阵有一定的认识基础。

numpy中创建单位矩阵借助identity()函数。更为准确的说,此函数创建的是一个n*n的单位数组,返回值的dtype=array数据形式。其中接受的参数有两个,第一个是n值大小,第二个为数据类型,一般为浮点型。单位数组的概念与单位矩阵相同,主对角线元素为1,其他元素均为零,等同于单位1。而要想得到单位矩阵,只要用mat()函数将数组转换为矩阵即可。

>>> import numpy as np
>>> help(np.identity)
     
Help on function identity in module numpy:

identity(n, dtype=None)
  Return the identity array.
  
  The identity array is a square array with ones on
  the main diagonal.
  
  Parameters
  ----------
  n : int
    Number of rows (and columns) in `n` x `n` output.
  dtype : data-type, optional
    Data-type of the output. Defaults to ``float``.
  
  Returns
  -------
  out : ndarray
    `n` x `n` array with its main diagonal set to one,
    and all other elements 0.
  
  Examples
  --------
  >>> np.identity(3)
  array([[ 1., 0., 0.],
      [ 0., 1., 0.],
      [ 0., 0., 1.]])
>>> np.identity(5)
     
array([[1., 0., 0., 0., 0.],
    [0., 1., 0., 0., 0.],
    [0., 0., 1., 0., 0.],
    [0., 0., 0., 1., 0.],
    [0., 0., 0., 0., 1.]])
>>> A = np.mat(np.identity(5))
     
>>> A
     
matrix([[1., 0., 0., 0., 0.],
    [0., 1., 0., 0., 0.],
    [0., 0., 1., 0., 0.],
    [0., 0., 0., 1., 0.],
    [0., 0., 0., 0., 1.]])

矩阵的运算中还经常使用对角阵,numpy中的对角阵用eye()函数来创建。eye()函数接受五个参数,返回一个单位数组。第一个和第二个参数N,M分别对应表示创建数组的行数和列数,当然当你只设定一个值时,就默认了N=M。第三个参数k是对角线指数,跟diagonal中的offset参数是一样的,默认值为0,就是主对角线的方向,上三角方向为正,下三角方向为负,可以取-n到+m的范围。第四个参数是dtype,用于指定元素的数据类型,第五个参数是order,用于排序,有‘C'和‘F'两个参数,默认值为‘C',为行排序,‘F'为列排序。返回值为一个单位数组。

>>> help(np.eye)
    
Help on function eye in module numpy:

eye(N, M=None, k=0, dtype=<class 'float'>, order='C')
  Return a 2-D array with ones on the diagonal and zeros elsewhere.
  
  Parameters
  ----------
  N : int
   Number of rows in the output.
  M : int, optional
   Number of columns in the output. If None, defaults to `N`.
  k : int, optional
   Index of the diagonal: 0 (the default) refers to the main diagonal,
   a positive value refers to an upper diagonal, and a negative value
   to a lower diagonal.
  dtype : data-type, optional
   Data-type of the returned array.
  order : {'C', 'F'}, optional
    Whether the output should be stored in row-major (C-style) or
    column-major (Fortran-style) order in memory.
  
    .. versionadded:: 1.14.0
  
  Returns
  -------
  I : ndarray of shape (N,M)
   An array where all elements are equal to zero, except for the `k`-th
   diagonal, whose values are equal to one.
  
  See Also
  --------
  identity : (almost) equivalent function
  diag : diagonal 2-D array from a 1-D array specified by the user.
  
  Examples
  --------
  >>> np.eye(2, dtype=int)
  array([[1, 0],
      [0, 1]])
  >>> np.eye(3, k=1)
  array([[ 0., 1., 0.],
      [ 0., 0., 1.],
      [ 0., 0., 0.]])

numpy中的diagonal()方法可以对n*n的数组和方阵取对角线上的元素,diagonal()接受三个参数。第一个offset参数是主对角线的方向,默认值为0是主对角线,上三角方向为正,下三角方向为负,可以取-n到+n的范围。第二个参数和第三个参数是在数组大于2维时指定一个2维数组时使用,默认值axis1=0,axis2=1。

>>> help(A.diagonal)
     
Help on built-in function diagonal:

diagonal(...) method of numpy.matrix instance
  a.diagonal(offset=0, axis1=0, axis2=1)
  
  Return specified diagonals. In NumPy 1.9 the returned array is a
  read-only view instead of a copy as in previous NumPy versions. In
  a future version the read-only restriction will be removed.
  
  Refer to :func:`numpy.diagonal` for full documentation.
  
  See Also
  --------
  numpy.diagonal : equivalent function
>>> help(np.diagonal)
     
Help on function diagonal in module numpy:

diagonal(a, offset=0, axis1=0, axis2=1)
  Return specified diagonals.
  
  If `a` is 2-D, returns the diagonal of `a` with the given offset,
  i.e., the collection of elements of the form ``a[i, i+offset]``. If
  `a` has more than two dimensions, then the axes specified by `axis1`
  and `axis2` are used to determine the 2-D sub-array whose diagonal is
  returned. The shape of the resulting array can be determined by
  removing `axis1` and `axis2` and appending an index to the right equal
  to the size of the resulting diagonals.
  
  In versions of NumPy prior to 1.7, this function always returned a new,
  independent array containing a copy of the values in the diagonal.
  
  In NumPy 1.7 and 1.8, it continues to return a copy of the diagonal,
  but depending on this fact is deprecated. Writing to the resulting
  array continues to work as it used to, but a FutureWarning is issued.
  
  Starting in NumPy 1.9 it returns a read-only view on the original array.
  Attempting to write to the resulting array will produce an error.
  
  In some future release, it will return a read/write view and writing to
  the returned array will alter your original array. The returned array
  will have the same type as the input array.
  
  If you don't write to the array returned by this function, then you can
  just ignore all of the above.
  
  If you depend on the current behavior, then we suggest copying the
  returned array explicitly, i.e., use ``np.diagonal(a).copy()`` instead
  of just ``np.diagonal(a)``. This will work with both past and future
  versions of NumPy.
  
  Parameters
  ----------
  a : array_like
    Array from which the diagonals are taken.
  offset : int, optional
    Offset of the diagonal from the main diagonal. Can be positive or
    negative. Defaults to main diagonal (0).
  axis1 : int, optional
    Axis to be used as the first axis of the 2-D sub-arrays from which
    the diagonals should be taken. Defaults to first axis (0).
  axis2 : int, optional
    Axis to be used as the second axis of the 2-D sub-arrays from
    which the diagonals should be taken. Defaults to second axis (1).
  
  Returns
  -------
  array_of_diagonals : ndarray
    If `a` is 2-D, then a 1-D array containing the diagonal and of the
    same type as `a` is returned unless `a` is a `matrix`, in which case
    a 1-D array rather than a (2-D) `matrix` is returned in order to
    maintain backward compatibility.
    
    If ``a.ndim > 2``, then the dimensions specified by `axis1` and `axis2`
    are removed, and a new axis inserted at the end corresponding to the
    diagonal.
  
  Raises
  ------
  ValueError
    If the dimension of `a` is less than 2.
  
  See Also
  --------
  diag : MATLAB work-a-like for 1-D and 2-D arrays.
  diagflat : Create diagonal arrays.
  trace : Sum along diagonals.
  
  Examples
  --------
  >>> a = np.arange(4).reshape(2,2)
  >>> a
  array([[0, 1],
      [2, 3]])
  >>> a.diagonal()
  array([0, 3])
  >>> a.diagonal(1)
  array([1])
  
  A 3-D example:
  
  >>> a = np.arange(8).reshape(2,2,2); a
  array([[[0, 1],
      [2, 3]],
      [[4, 5],
      [6, 7]]])
  >>> a.diagonal(0, # Main diagonals of two arrays created by skipping
  ...      0, # across the outer(left)-most axis last and
  ...      1) # the "middle" (row) axis first.
  array([[0, 6],
      [1, 7]])
  
  The sub-arrays whose main diagonals we just obtained; note that each
  corresponds to fixing the right-most (column) axis, and that the
  diagonals are "packed" in rows.
  
  >>> a[:,:,0] # main diagonal is [0 6]
  array([[0, 2],
      [4, 6]])
  >>> a[:,:,1] # main diagonal is [1 7]
  array([[1, 3],
      [5, 7]])
>>> A = np.random.randint(low=5, high=30, size=(5, 5))
     
>>> A
     
array([[25, 15, 26, 6, 22],
    [27, 14, 22, 16, 21],
    [22, 17, 10, 14, 25],
    [11, 9, 27, 20, 6],
    [24, 19, 19, 26, 14]])
>>> A.diagonal()
     
array([25, 14, 10, 20, 14])
>>> A.diagonal(offset=1)
     
array([15, 22, 14, 6])
>>> A.diagonal(offset=-2)
     
array([22, 9, 19])

以上这篇numpy创建单位矩阵和对角矩阵的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python实现在matplotlib中两个坐标轴之间画一条直线光标的方法
May 20 Python
Python使用自带的ConfigParser模块读写ini配置文件
Jun 26 Python
Python 使用requests模块发送GET和POST请求的实现代码
Sep 21 Python
python爬取NUS-WIDE数据库图片
Oct 05 Python
Python爬取网页中的图片(搜狗图片)详解
Mar 23 Python
Python设计模式之桥接模式原理与用法实例分析
Jan 10 Python
Python使用pymongo库操作MongoDB数据库的方法实例
Feb 22 Python
pyqt5 键盘监听按下enter 就登陆的实例
Jun 25 Python
Python 运行.py文件和交互式运行代码的区别详解
Jul 02 Python
python tkinter之顶层菜单、弹出菜单实例
Mar 04 Python
利用Python实现某OA系统的自动定位功能
May 27 Python
浅谈keras中的目标函数和优化函数MSE用法
Jun 10 Python
python中从for循环延申到推导式的具体使用
Nov 29 #Python
python 实现矩阵按对角线打印
Nov 29 #Python
python之列表推导式的用法
Nov 29 #Python
python 实现方阵的对角线遍历示例
Nov 29 #Python
python 实现一个反向单位矩阵示例
Nov 29 #Python
python 实现矩阵填充0的例子
Nov 29 #Python
python循环嵌套的多种使用方法解析
Nov 29 #Python
You might like
PHP set_time_limit(0)长连接的实现分析
2010/03/02 PHP
学习使用curl采集curl使用方法
2012/01/11 PHP
php实现概率性随机抽奖代码
2016/01/02 PHP
PHP实现图片的等比缩放和Logo水印功能示例
2017/05/04 PHP
PHP 使用二进制保存用户状态的实例
2018/01/29 PHP
网页里控制图片大小的相关代码
2006/06/13 Javascript
JavaScript DOM学习第一章 W3C DOM简介
2010/02/19 Javascript
Javascript创建自定义对象 创建Object实例添加属性和方法
2012/06/04 Javascript
基于jquery实现拆分姓名的方法(纯JS版)
2013/05/08 Javascript
js中for in的用法示例解析
2013/12/25 Javascript
Jquery 获取指定标签的对象及属性的设置与移除
2014/05/29 Javascript
JavaScript中判断整字类型最简洁的实现方法
2014/11/08 Javascript
Jquery异步提交表单代码分享
2015/03/26 Javascript
JS当前页面登录注册框,固定DIV,底层阴影的实例代码
2016/09/29 Javascript
浅谈html转义及防止javascript注入攻击的方法
2016/12/04 Javascript
使用Vue-Router 2实现路由功能实例详解
2017/11/14 Javascript
浅谈Vue SSR 的 Cookies 问题
2017/11/20 Javascript
详解如何在vue项目中使用lodop打印插件
2018/09/27 Javascript
electron实现qq快捷登录的方法示例
2018/10/22 Javascript
浅谈javascript错误处理
2019/08/11 Javascript
vue实现简单图片上传
2020/06/30 Javascript
Vue 请求传公共参数的操作
2020/07/31 Javascript
Python解释执行原理分析
2014/08/22 Python
Python使用urllib2模块实现断点续传下载的方法
2015/06/17 Python
Python打印“菱形”星号代码方法
2018/02/05 Python
Python将字典转换为XML的方法
2020/08/01 Python
LookFantastic丹麦:英国美容护肤精品在线商城
2016/08/18 全球购物
Black Halo官方网站:购买连衣裙、礼服和连体裤
2018/06/13 全球购物
支部书记四风问题自我剖析材料
2014/09/29 职场文书
工作失职造成投诉的检讨书范文
2014/10/05 职场文书
学习保证书
2015/01/17 职场文书
清明节寄语2015
2015/03/23 职场文书
财务人员廉洁自律心得体会
2016/01/13 职场文书
高一作文之乐趣
2019/11/21 职场文书
HashMap实现保存两个key相同的数据
2021/06/30 Java/Android
如何让你的Nginx支持分布式追踪详解
2022/07/07 Servers