Numpy的简单用法小结


Posted in Python onAugust 28, 2019

Numpy的简单用法,下面就一起来了解一下

import numpy as np

一、创建ndarray对象

列表转换成ndarray:

>>> a = [1,2,3,4,5]
>>> np.array(a)
array([1, 2, 3, 4, 5])

取随机浮点数

>>> np.random.rand(3, 4)
array([[ 0.16215336, 0.49847764, 0.36217369, 0.6678112 ],
    [ 0.66729648, 0.86538771, 0.32621889, 0.07709784],
    [ 0.05460976, 0.3446629 , 0.35589223, 0.3716221 ]])

取随机整数

>>> np.random.randint(1, 5, size=(3,4))
array([[2, 3, 1, 2],
    [3, 4, 4, 4],
    [4, 4, 4, 3]])

取零

>>> np.zeros((3,4))
array([[ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.]])

取一

>>> np.ones((3,4))
array([[ 1., 1., 1., 1.],
    [ 1., 1., 1., 1.],
    [ 1., 1., 1., 1.]])

取空(最好别用,了解一下,版本不同返回值不一样)

>>> np.empty((3,4))
array([[ 1., 1., 1., 1.],
    [ 1., 1., 1., 1.],
    [ 1., 1., 1., 1.]])

取整数零或一

>>> np.ones((3,4),int)
array([[1, 1, 1, 1],
    [1, 1, 1, 1],
    [1, 1, 1, 1]])

>>> np.zeros((3,4),int)
array([[0, 0, 0, 0],
    [0, 0, 0, 0],
    [0, 0, 0, 0]])

仿range命令创建ndarray:

>>> np.arange(2,10,2) # 开始,结束,步长
array([2, 4, 6, 8])

二、ndarray属性的查看和操作:

看ndarray属性:

>>> a = [[1,2,3,4,5],[6,7,8,9,0]]
>>> b = np.array(a)
>>> b.ndim #维度个数(看几维)
2
>>> b.shape #维度大小(看具体长宽)
(5,2)
>>>b.dtype
dtype('int32')

ndarray创建时指定属性:

>>> np.array([1,2,3,4,5],dtype=np.float64)
array([ 1., 2., 3., 4., 5.])

>>> np.zeros((2,5),dtype=np.int32)
array([[0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0]])

属性强转:

>>> a = np.array([1,2,3,4,5],dtype=np.float64)
>>> a
array([ 1., 2., 3., 4., 5.])

>>> a.astype(np.int32)
 array([1, 2, 3, 4, 5])

三、简单操作:

批量运算:

>>> a = np.array([1,2,3,4,5],dtype=np.int32)
>>> a
array([1, 2, 3, 4, 5])

>>> a + a
array([ 2, 4, 6, 8, 10])

>>> a * a
array([ 1, 4, 9, 16, 25])

>>> a - 2
array([-1, 0, 1, 2, 3])

>>> a / 2
array([ 0.5, 1. , 1.5, 2. , 2.5])

#等等

改变维度:

>>> a = np.array([[1,2,3,4,5],[6,7,8,9,0]],dtype=np.int32)
>>> a
array([[1, 2, 3, 4, 5],
    [6, 7, 8, 9, 0]])

>>> a.reshape((5,2))
array([[1, 2],
    [3, 4],
    [5, 6],
    [7, 8],
    [9, 0]])

矩阵转换(和改变维度有本质区别,仔细):

>>> a = np.array([[1,2,3,4,5],[6,7,8,9,0]],dtype=np.int32)
>>> a
array([[1, 2, 3, 4, 5],
    [6, 7, 8, 9, 0]])

>>> a.transpose()
array([[1, 6],
    [2, 7],
    [3, 8],
    [4, 9],
    [5, 0]])

打乱(只能打乱一维):

>>> a = np.array([[1,2],[3,4],[5,6],[7,8],[9,0]],dtype=np.int32)
>>> a
array([[1, 2],
    [3, 4],
    [5, 6],
    [7, 8],
    [9, 0]])
    
>>> np.random.shuffle(a)
>>> a
array([[9, 0],
    [1, 2],
    [7, 8],
    [5, 6],
    [3, 4]])

四、切片和索引:

一维数组(和普通列表一样):

>>> a = np.array(range(10))
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> a[3]
3

>>> a[2:9:2]
array([2, 4, 6, 8])

多维数组(也差不了多少):

>>> a = np.array([[1,2,3,4,5],[6,7,8,9,0],[11,12,13,14,15]],dtype=np.int32)

>>> a
array([[ 1, 2, 3, 4, 5],
    [ 6, 7, 8, 9, 0],
    [11, 12, 13, 14, 15]])
   

>>> a[:, 1:4]
array([[ 2, 3, 4],
    [ 7, 8, 9],
    [12, 13, 14]])

条件索引:

>>> a = np.array([[1,2,3,4,5],[6,7,8,9,0],[11,12,13,14,15]],dtype=np.int32)

>>> a
array([[ 1, 2, 3, 4, 5],
    [ 6, 7, 8, 9, 0],
    [11, 12, 13, 14, 15]])
   

>>> a > 5
array([[False, False, False, False, False],
    [ True, True, True, True, False],
    [ True, True, True, True, True]], dtype=bool)

>>> a[a>5]
array([ 6, 7, 8, 9, 11, 12, 13, 14, 15])

>>> a%3 == 0
Out[128]: 
array([[False, False, True, False, False],
    [ True, False, False, True, True],
    [False, True, False, False, True]], dtype=bool)

>>> a[a%3 == 0]
array([ 3, 6, 9, 0, 12, 15])

五、函数(numpy核心知识点)

计算函数(都不想举例了,太简单。。):

np.ceil(): 向上最接近的整数,参数是 number 或 array
np.floor(): 向下最接近的整数,参数是 number 或 array
np.rint(): 四舍五入,参数是 number 或 array
np.isnan(): 判断元素是否为 NaN(Not a Number),参数是 number 或 array
np.multiply(): 元素相乘,参数是 number 或 array
np.divide(): 元素相除,参数是 number 或 array
np.abs():元素的绝对值,参数是 number 或 array
np.where(condition, x, y): 三元运算符,x if condition else y
>>> a = np.random.randn(3,4)
>>> a
array([[ 0.37091654, 0.53809133, -0.99434523, -1.21496837],
    [ 0.00701986, 1.65776152, 0.41319601, 0.41356973],
    [-0.32922342, 1.07773886, -0.27273258, 0.29474435]])

>>> np.ceil(a)   
array([[ 1., 1., -0., -1.],
    [ 1., 2., 1., 1.],
    [-0., 2., -0., 1.]])


>>> np.where(a>0, 10, 0)
array([[10, 10, 0, 0],
    [10, 10, 10, 10],
    [ 0, 10, 0, 10]])

统计函数

np.mean():所有元素的平均值
np.sum():所有元素的和,参数是 number 或 array
np.max():所有元素的最大值
np.min():所有元素的最小值,参数是 number 或 array
np.std():所有元素的标准差
np.var():所有元素的方差,参数是 number 或 array
np.argmax():最大值的下标索引值,
np.argmin():最小值的下标索引值,参数是 number 或 array
np.cumsum():返回一个一维数组,每个元素都是之前所有元素的累加和
np.cumprod():返回一个一维数组,每个元素都是之前所有元素的累乘积,参数是 number 或 array
>>> a = np.arange(12).reshape(3,4).transpose()
>>> a
array([[ 0, 4, 8],
    [ 1, 5, 9],
    [ 2, 6, 10],
    [ 3, 7, 11]])

>>> np.mean(a)
5.5

>>> np.sum(a)
66

>>> np.argmax(a)
11

>>> np.std(a)
3.4520525295346629

>>> np.cumsum(a)
array([ 0, 4, 12, 13, 18, 27, 29, 35, 45, 48, 55, 66], dtype=int32)

判断函数:

np.any(): 至少有一个元素满足指定条件,返回True
np.all(): 所有的元素满足指定条件,返回True
>>> a = np.random.randn(2,3)
>>> a
array([[-0.65750548, 2.24801371, -0.26593284],
    [ 0.31447911, -1.0215645 , -0.4984958 ]])

>>> np.any(a>0)
True

>>> np.all(a>0)
False

去除重复:

np.unique(): 去重
>>> a = np.array([[1,2,3],[2,3,4]])
>>> a
array([[1, 2, 3],
    [2, 3, 4]])

>>> np.unique(a)
array([1, 2, 3, 4])

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python实现代理服务功能实例
Nov 15 Python
Python实现简单状态框架的方法
Mar 19 Python
python实现计算倒数的方法
Jul 11 Python
python中函数总结之装饰器闭包详解
Jun 12 Python
python实现简单登陆流程的方法
Apr 22 Python
pytorch动态网络以及权重共享实例
Jan 06 Python
python 对任意数据和曲线进行拟合并求出函数表达式的三种解决方案
Feb 18 Python
python 获取当前目录下的文件目录和文件名实例代码详解
Mar 10 Python
如何搭建pytorch环境的方法步骤
May 06 Python
pycharm-professional-2020.1下载与激活的教程
Sep 21 Python
Django windows使用Apache实现部署流程解析
Oct 12 Python
详解win10下pytorch-gpu安装以及CUDA详细安装过程
Jan 28 Python
Python 通过截图匹配原图中的位置(opencv)实例
Aug 27 #Python
Python 转换文本编码实现解析
Aug 27 #Python
python-opencv获取二值图像轮廓及中心点坐标的代码
Aug 27 #Python
python定位xpath 节点位置的方法
Aug 27 #Python
python实现截取屏幕保存文件,删除N天前截图的例子
Aug 27 #Python
python自动化UI工具发送QQ消息的实例
Aug 27 #Python
python 调用pyautogui 实时获取鼠标的位置、移动鼠标的方法
Aug 27 #Python
You might like
PHP Memcached应用实现代码
2010/02/08 PHP
PHP执行linux系统命令的常用函数使用说明
2010/04/27 PHP
yii框架源码分析之创建controller代码
2011/06/28 PHP
老生常谈PHP 文件写入和读取(必看篇)
2017/05/22 PHP
PHP生成推广海报的方法分享
2018/04/22 PHP
PHP获取当前时间不准确问题解决方案
2020/08/14 PHP
Javascript算符的优先级介绍
2013/03/20 Javascript
原生js实现淘宝首页点击按钮缓慢回到顶部效果
2014/04/06 Javascript
jQuery 写的简单打字游戏可以提示正确和错误的次数
2014/07/01 Javascript
JavaScript用select实现日期控件
2015/07/17 Javascript
jquery关于事件冒泡和事件委托的技巧及阻止与允许事件冒泡的三种实现方法
2015/11/27 Javascript
AngularJS仿苹果滑屏删除控件
2016/01/18 Javascript
Javascript中的神器——Promise
2017/02/08 Javascript
Java中int与integer的区别(基本数据类型与引用数据类型)
2017/02/19 Javascript
js监听html页面的上下滚动事件方法
2018/09/11 Javascript
微信小程序自定义tabBar组件开发详解
2020/09/24 Javascript
JavaScript类型相关的常用操作总结
2019/02/14 Javascript
Vue实现简单的留言板
2020/10/23 Javascript
跟老齐学Python之编写类之四再论继承
2014/10/11 Python
深入了解Python数据类型之列表
2016/06/24 Python
教你学会使用Python正则表达式
2017/09/07 Python
Python+OpenCV图片局部区域像素值处理详解
2019/01/23 Python
浅谈Python类中的self到底是干啥的
2019/11/11 Python
Java ExcutorService优雅关闭方式解析
2020/05/30 Python
keras 模型参数,模型保存,中间结果输出操作
2020/07/06 Python
Python OpenCV中的numpy与图像类型转换操作
2020/12/11 Python
html5/css3响应式页面开发总结
2018/10/16 HTML / CSS
SteelSeries赛睿官网:游戏外设和配件的领先制造商(耳机、键盘、鼠标和鼠标垫)
2018/06/17 全球购物
医药专业推荐信
2013/11/15 职场文书
酒吧副总经理岗位职责
2013/12/10 职场文书
会计师职业生涯规划范文
2014/02/18 职场文书
保护环境建议书100字
2014/05/13 职场文书
2014年教师思想工作总结
2014/12/03 职场文书
党风廉正建设责任书
2015/01/29 职场文书
仓管员岗位职责范本
2015/04/01 职场文书
初三毕业感言
2015/07/31 职场文书