python爬虫使用正则爬取网站的实现


Posted in Python onAugust 03, 2020

本文章的所有代码和相关文章, 仅用于经验技术交流分享,禁止将相关技术应用到不正当途径,滥用技术产生的风险与本人无关。

本文章是自己学习的一些记录。欢迎各位大佬点评!

首先

今天是第一天写博客,感受到了博客的魅力,博客不仅能够记录每天的代码学习情况,并且可以当作是自己的学习笔记,以便在后面知识点不清楚的时候前来复习。这是第一次使用爬虫爬取网页,这里展示的是爬取豆瓣电影top250的整个过程,欢迎大家指点。

这里我只爬取了电影链接和电影名称,如果想要更加完整的爬取代码,请联系我。qq 1540741344 欢迎交流

开发工具: pycharm、chrome

分析网页

在开发之前你首先要去你所要爬取的网页提取出你要爬取的网页链接,并且将网页分析出你想要的内容。

在开发之前首先要导入几个模块,模块描述如下,具体不知道怎么导入包的可以看我下一篇内容

python爬虫使用正则爬取网站的实现

首先定义几个函数,便于将各个步骤的工作分开便于代码管理,我这里是分成了7个函数,分别如下:

@主函数入口

if __name__=="__main__":    #程序执行入口
  main()

@捕获网页html内容 askURL(url)

这里的head的提取是在chrome中分析网页源码获得的,具体我也不做过多解释,大家可以百度

def askURL(url): #得到指定网页信息的内容 #爬取一个网页的数据
  # 用户代理,本质上是告诉服务器,我们是以什么样的机器来访问网站,以便接受什么样的水平数据
  head={"User-Agent":"Mozilla / 5.0(Windows NT 10.0;Win64;x64) AppleWebKit / 537.36(KHTML, likeGecko) Chrome / 84.0.4147.89 Safari / 537.36"}
  request=urllib.request.Request(url,headers=head)     #request对象接受封装的信息,通过urllib携带headers访问信息访问url
  response=urllib.request.urlopen(request)         #用于接收返回的网页信息
  html=response.read().decode("utf-8")           #通过read方法读取response对象里的网页信息,使用“utf-8”
  return html

@将baseurl里的内容进行逐一解析 getData(baseURL)
这里面的findlink和findname是正则表达式,可以首先定义全局变量

findlink=r'<a class="" href="(.*?)"'
findname=r'<span class="title">(.*?)</span>'
def getData(baseURL):
  dataList=[]                   #初始化datalist用于存储获取到的数据
  for i in range(0,10):
    url=baseURL+str(i*25)
    html=askURL(url)                  #保存获取到的源码
    soup=BeautifulSoup(html,"html.parser")       #对html进行逐一解析,使用html.parser解析器进行解析
    for item in soup.find_all("div",class_="item"):   #查找符合要求的字符串 ,形成列表,find_all是查找所有的class是item的div
      data=[]                     #初始化data,用于捕获一次爬取一个div里面的内容
      item=str(item)                 #将item数据类型转化为字符串类型
      # print(item)
      link=re.findall(findlink,item)[0]        #使用re里的findall方法根据正则提取item里面的电影链接
      data.append(link)                #将网页链接追加到data里
      name=re.findall(findname,item)[0]        #使用re里的findall方法根据正则提取item里面的电影名字
      data.append(name)                #将电影名字链接追加到data里
      # print(link)
      # print(name)
      dataList.append(data)              #将捕获的电影链接和电影名存到datalist里面
  return dataList                     #返回一个列表,里面存放的是每个电影的信息
  print(dataList)

@保存捕获的数据到excel saveData(dataList,savepath)

def saveData(dataList,savepath):              #保存捕获的内容到excel里,datalist是捕获的数据列表,savepath是保存路径
  book=xlwt.Workbook(encoding="utf-8",style_compression=0)#初始化book对象,这里首先要导入xlwt的包
  sheet=book.add_sheet("test",cell_overwrite_ok=True)   #创建工作表
  col=["电影详情链接","电影名称"]              #列名
  for i in range(0,2):
    sheet.write(0,i,col[i])               #将列名逐一写入到excel
  for i in range(0,250):
    data=dataList[i]                  #依次将datalist里的数据获取
    for j in range(0,2):
      sheet.write(i+1,j,data[j])           #将data里面的数据逐一写入
  book.save(savepath)

@保存捕获的数据到数据库

def saveDataDb(dataList,dbpath):
  initDb(dbpath)                     #用一个函数初始化数据库
  conn=sqlite3.connect(dbpath)              #初始化数据库
  cur=conn.cursor()                    #获取游标
  for data in dataList:                  
    for index in range(len(data)): 
      data[index]='"'+data[index]+'" '        #将每条数据都加上""
    #每条数据之间用,隔开,定义sql语句的格式
    sql='''
      insert into test(link,name) values (%s)     
    '''%','.join (data)
    cur.execute(sql)                  #执行sql语句
    conn.commit()                    #提交数据库操作
  conn.close()
  print("爬取存入数据库成功!")

@初始化数据库 initDb(dbpath)

def initDb(dbpath):
  conn=sqlite3.connect(dbpath)
  cur=conn.cursor()
  sql='''
    create table test(
      id integer primary key autoincrement,
      link text,
      name varchar 
      
    )
  '''
  cur.execute(sql)
  conn.commit()
  cur.close()
  conn.close()

@main函数,用于调用其他函数 main()

def main():
  dbpath="testSpider.db"               #用于指定数据库存储路径
  savepath="testSpider.xls"             #用于指定excel存储路径
  baseURL="https://movie.douban.com/top250?start="  #爬取的网页初始链接
  dataList=getData(baseURL)
  saveData(dataList,savepath)
  saveDataDb(dataList,dbpath)

点击运行就可以看到在左侧已经生成了excel和DB文件

python爬虫使用正则爬取网站的实现

excel可以直接打开

python爬虫使用正则爬取网站的实现

DB文件双击之后会在右边打开

python爬虫使用正则爬取网站的实现

到这里爬虫的基本内容就已经结束了,如果有什么不懂或者想交流的地方可以加我qq 1540741344

以下附上整个代码

import re                  #网页解析,获取数据
from bs4 import BeautifulSoup        #正则表达式,进行文字匹配
import urllib.request,urllib.error     #制定URL,获取网页数据
import xlwt
import sqlite3

findlink=r'<a class="" href="(.*?)"'
findname=r'<span class="title">(.*?)</span>'
def main():
  dbpath="testSpider.db"               #用于指定数据库存储路径
  savepath="testSpider.xls"             #用于指定excel存储路径
  baseURL="https://movie.douban.com/top250?start="  #爬取的网页初始链接
  dataList=getData(baseURL)
  saveData(dataList,savepath)
  saveDataDb(dataList,dbpath)
def askURL(url): #得到指定网页信息的内容 #爬取一个网页的数据
  # 用户代理,本质上是告诉服务器,我们是以什么样的机器来访问网站,以便接受什么样的水平数据
  head={"User-Agent":"Mozilla / 5.0(Windows NT 10.0;Win64;x64) AppleWebKit / 537.36(KHTML, likeGecko) Chrome / 84.0.4147.89 Safari / 537.36"}
  request=urllib.request.Request(url,headers=head)     #request对象接受封装的信息,通过urllib携带headers访问信息访问url
  response=urllib.request.urlopen(request)         #用于接收返回的网页信息
  html=response.read().decode("utf-8")           #通过read方法读取response对象里的网页信息,使用“utf-8”
  return html                       #返回捕获的网页内容,此时还是未处理过的
def getData(baseURL):
  dataList=[]                   #初始化datalist用于存储获取到的数据
  for i in range(0,10):
    url=baseURL+str(i*25)
    html=askURL(url)                  #保存获取到的源码
    soup=BeautifulSoup(html,"html.parser")       #对html进行逐一解析,使用html.parser解析器进行解析
    for item in soup.find_all("div",class_="item"):   #查找符合要求的字符串 ,形成列表,find_all是查找所有的class是item的div
      data=[]                     #初始化data,用于捕获一次爬取一个div里面的内容
      item=str(item)                 #将item数据类型转化为字符串类型
      # print(item)
      link=re.findall(findlink,item)[0]        #使用re里的findall方法根据正则提取item里面的电影链接
      data.append(link)                #将网页链接追加到data里
      name=re.findall(findname,item)[0]        #使用re里的findall方法根据正则提取item里面的电影名字
      data.append(name)                #将电影名字链接追加到data里
      # print(link)
      # print(name)
      dataList.append(data)              #将捕获的电影链接和电影名存到datalist里面
  return dataList                     #返回一个列表,里面存放的是每个电影的信息
  print(dataList)

def saveData(dataList,savepath):              #保存捕获的内容到excel里,datalist是捕获的数据列表,savepath是保存路径
  book=xlwt.Workbook(encoding="utf-8",style_compression=0)#初始化book对象,这里首先要导入xlwt的包
  sheet=book.add_sheet("test",cell_overwrite_ok=True)   #创建工作表
  col=["电影详情链接","电影名称"]              #列名
  for i in range(0,2):
    sheet.write(0,i,col[i])               #将列名逐一写入到excel
  for i in range(0,250):
    data=dataList[i]                  #依次将datalist里的数据获取
    for j in range(0,2):
      sheet.write(i+1,j,data[j])           #将data里面的数据逐一写入
  book.save(savepath)                   #保存excel文件

def saveDataDb(dataList,dbpath):
  initDb(dbpath)                     #用一个函数初始化数据库
  conn=sqlite3.connect(dbpath)              #初始化数据库
  cur=conn.cursor()                    #获取游标
  for data in dataList:
    for index in range(len(data)):
      data[index]='"'+data[index]+'" '        #将每条数据都加上""
    #每条数据之间用,隔开,定义sql语句的格式
    sql='''
      insert into test(link,name) values (%s)     
    '''%','.join (data)
    cur.execute(sql)                  #执行sql语句
    conn.commit()                    #提交数据库操作
  conn.close()
  print("爬取存入数据库成功!")
def initDb(dbpath):
  conn=sqlite3.connect(dbpath)
  cur=conn.cursor()
  sql='''
    create table test(
      id integer primary key autoincrement,
      link text,
      name varchar 
      
    )
  '''
  cur.execute(sql)
  conn.commit()
  cur.close()
  conn.close()
if __name__=="__main__":    #程序执行入口
  main()

到此这篇关于python爬虫使用正则爬取网站的实现的文章就介绍到这了,更多相关python正则爬取内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
零基础写python爬虫之urllib2中的两个重要概念:Openers和Handlers
Nov 05 Python
使用Python的PIL模块来进行图片对比
Feb 18 Python
Python图算法实例分析
Aug 13 Python
利用python模拟sql语句对员工表格进行增删改查
Jul 05 Python
解决python写入mysql中datetime类型遇到的问题
Jun 21 Python
Python Socket编程之多线程聊天室
Jul 28 Python
python文件操作之批量修改文件后缀名的方法
Aug 10 Python
用Python编写一个高效的端口扫描器的方法
Dec 20 Python
Python+selenium点击网页上指定坐标的实例
Jul 05 Python
线程安全及Python中的GIL原理分析
Oct 29 Python
python实现PCA降维的示例详解
Feb 24 Python
Python+Appium实现自动化清理微信僵尸好友的方法
Feb 04 Python
python获取整个网页源码的方法
Aug 03 #Python
flask开启多线程的具体方法
Aug 02 #Python
基于opencv实现简单画板功能
Aug 02 #Python
django下创建多个app并设置urls方法
Aug 02 #Python
Django如何在不停机的情况下创建索引
Aug 02 #Python
如何用Anaconda搭建虚拟环境并创建Django项目
Aug 02 #Python
如何解决flask修改静态资源后缓存文件不能及时更改问题
Aug 02 #Python
You might like
?繁体转换的class
2006/10/09 PHP
php数组函数序列之ksort()对数组的元素键名进行升序排序,保持索引关系
2011/11/02 PHP
php处理单文件、多文件上传代码分享
2016/08/24 PHP
CI(CodeIgniter)框架实现图片上传的方法
2017/03/24 PHP
PHP共享内存使用与信号控制实例分析
2018/05/09 PHP
使用Git实现Laravel项目的自动化部署
2019/11/24 PHP
(jQuery,mootools,dojo)使用适合自己的编程别名命名
2010/09/14 Javascript
基于jquery实现的鼠标拖拽元素复制并写入效果
2011/08/23 Javascript
利用jQuery简单实现产品展示图片左右滚动功能(示例代码)
2014/01/02 Javascript
js/jquery解析json和数组格式的方法详解
2014/01/09 Javascript
js日期对象兼容性的处理方法
2014/01/28 Javascript
jQuery实现页面内锚点平滑跳转特效的方法总结
2015/05/11 Javascript
react-router实现跳转传值的方法示例
2017/05/27 Javascript
vue下跨域设置的相关介绍
2017/08/26 Javascript
原生JavaScript实现Ajax异步请求
2017/11/19 Javascript
浅谈Vue-cli单文件组件引入less,sass,css样式的不同方法
2018/03/13 Javascript
Node.js文件编码格式的转换的方法
2018/04/27 Javascript
JS实现字符串中去除指定子字符串方法分析
2018/05/17 Javascript
vue权限路由实现的方法示例总结
2018/07/29 Javascript
video.js 实现视频只能后退不能快进的思路详解
2018/08/09 Javascript
layui前端时间戳转化实例
2019/11/15 Javascript
Vue Cli3 打包配置并自动忽略console.log语句的方法
2020/04/23 Javascript
ES6学习教程之Promise用法详解
2020/11/22 Javascript
python实现聊天小程序
2018/03/13 Python
Python 机器学习库 NumPy入门教程
2018/04/19 Python
opencv python 图像去噪的实现方法
2018/08/31 Python
python 使用值来排序一个字典的方法
2018/11/16 Python
python 常见字符串与函数的用法详解
2018/11/23 Python
python tools实现视频的每一帧提取并保存
2020/03/20 Python
如何使用python记录室友的抖音在线时间
2020/06/29 Python
Python 高效编程技巧分享
2020/09/10 Python
Get The Label中文官网:英国运动时尚购物平台
2017/04/19 全球购物
化工实习心得体会
2014/09/09 职场文书
2015年学生会部门工作总结
2015/04/21 职场文书
国家助学金受助感言
2015/08/01 职场文书
2016年政治理论学习心得体会
2016/01/25 职场文书