python初步实现word2vec操作


Posted in Python onJune 09, 2020

一、前言

一开始看到word2vec环境的安装还挺复杂的,安了半天Cygwin也没太搞懂。后来突然发现,我为什么要去安c语言版本的呢,我应该去用python版本的,然后就发现了gensim,安装个gensim的包就可以用word2vec了,不过gensim只实现了word2vec里面的skip-gram模型。若要用到其他模型,就需要去研究其他语言的word2vec了。

二、语料准备

有了gensim包之后,看了网上很多教程都是直接传入一个txt文件,但是这个txt文件长啥样,是什么样的数据格式呢,很多博客都没有说明,也没有提供可以下载的txt文件作为例子。进一步理解之后发现这个txt是一个包含巨多文本的分好词的文件。如下图所示,是我自己训练的一个语料,我选取了自己之前用爬虫抓取的7000条新闻当做语料并进行分词。注意,词与词之间一定要用空格:

python初步实现word2vec操作

这里分词使用的是结巴分词。

这部分代码如下:

import jieba
f1 =open("fenci.txt")
f2 =open("fenci_result.txt", 'a')
lines =f1.readlines() # 读取全部内容
for line in lines:
  line.replace('\t', '').replace('\n', '').replace(' ','')
  seg_list = jieba.cut(line, cut_all=False)
  f2.write(" ".join(seg_list))
 
f1.close()
f2.close()

还要注意的一点就是语料中的文本一定要多,看网上随便一个语料都是好几个G,而且一开始我就使用了一条新闻当成语料库,结果很不好,输出都是0。然后我就用了7000条新闻作为语料库,分词完之后得到的fenci_result.txt是20M,虽然也不大,但是已经可以得到初步结果了。

三、使用gensim的word2vec训练模型

相关代码如下:

from gensim.modelsimport word2vec
import logging
 
# 主程序
logging.basicConfig(format='%(asctime)s:%(levelname)s: %(message)s', level=logging.INFO)
sentences =word2vec.Text8Corpus(u"fenci_result.txt") # 加载语料
model =word2vec.Word2Vec(sentences, size=200) #训练skip-gram模型,默认window=5
 
print model
# 计算两个词的相似度/相关程度
try:
  y1 = model.similarity(u"国家", u"国务院")
except KeyError:
  y1 = 0
print u"【国家】和【国务院】的相似度为:", y1
print"-----\n"
#
# 计算某个词的相关词列表
y2 = model.most_similar(u"控烟", topn=20) # 20个最相关的
print u"和【控烟】最相关的词有:\n"
for item in y2:
  print item[0], item[1]
print"-----\n"
 
# 寻找对应关系
print u"书-不错,质量-"
y3 =model.most_similar([u'质量', u'不错'], [u'书'], topn=3)
for item in y3:
  print item[0], item[1]
print"----\n"
 
# 寻找不合群的词
y4 =model.doesnt_match(u"书 书籍 教材 很".split())
print u"不合群的词:", y4
print"-----\n"
 
# 保存模型,以便重用
model.save(u"书评.model")
# 对应的加载方式
# model_2 =word2vec.Word2Vec.load("text8.model")
 
# 以一种c语言可以解析的形式存储词向量
#model.save_word2vec_format(u"书评.model.bin", binary=True)
# 对应的加载方式
# model_3 =word2vec.Word2Vec.load_word2vec_format("text8.model.bin",binary=True)

输出如下:

"D:\program files\python2.7.0\python.exe" "D:/pycharm workspace/毕设/cluster_test/word2vec.py"
D:\program files\python2.7.0\lib\site-packages\gensim\utils.py:840: UserWarning: detected Windows; aliasing chunkize to chunkize_serial
 warnings.warn("detected Windows; aliasing chunkize to chunkize_serial")
D:\program files\python2.7.0\lib\site-packages\gensim\utils.py:1015: UserWarning: Pattern library is not installed, lemmatization won't be available.
 warnings.warn("Pattern library is not installed, lemmatization won't be available.")
2016-12-12 15:37:43,331: INFO: collecting all words and their counts
2016-12-12 15:37:43,332: INFO: PROGRESS: at sentence #0, processed 0 words, keeping 0 word types
2016-12-12 15:37:45,236: INFO: collected 99865 word types from a corpus of 3561156 raw words and 357 sentences
2016-12-12 15:37:45,236: INFO: Loading a fresh vocabulary
2016-12-12 15:37:45,413: INFO: min_count=5 retains 29982 unique words (30% of original 99865, drops 69883)
2016-12-12 15:37:45,413: INFO: min_count=5 leaves 3444018 word corpus (96% of original 3561156, drops 117138)
2016-12-12 15:37:45,602: INFO: deleting the raw counts dictionary of 99865 items
2016-12-12 15:37:45,615: INFO: sample=0.001 downsamples 29 most-common words
2016-12-12 15:37:45,615: INFO: downsampling leaves estimated 2804247 word corpus (81.4% of prior 3444018)
2016-12-12 15:37:45,615: INFO: estimated required memory for 29982 words and 200 dimensions: 62962200 bytes
2016-12-12 15:37:45,746: INFO: resetting layer weights
2016-12-12 15:37:46,782: INFO: training model with 3 workers on 29982 vocabulary and 200 features, using sg=0 hs=0 sample=0.001 negative=5 window=5
2016-12-12 15:37:46,782: INFO: expecting 357 sentences, matching count from corpus used for vocabulary survey
2016-12-12 15:37:47,818: INFO: PROGRESS: at 1.96% examples, 267531 words/s, in_qsize 6, out_qsize 0
2016-12-12 15:37:48,844: INFO: PROGRESS: at 3.70% examples, 254229 words/s, in_qsize 3, out_qsize 1
2016-12-12 15:37:49,871: INFO: PROGRESS: at 5.99% examples, 273509 words/s, in_qsize 3, out_qsize 1
2016-12-12 15:37:50,867: INFO: PROGRESS: at 8.18% examples, 281557 words/s, in_qsize 6, out_qsize 0
2016-12-12 15:37:51,872: INFO: PROGRESS: at 10.20% examples, 280918 words/s, in_qsize 5, out_qsize 0
2016-12-12 15:37:52,898: INFO: PROGRESS: at 12.44% examples, 284750 words/s, in_qsize 6, out_qsize 0
2016-12-12 15:37:53,911: INFO: PROGRESS: at 14.17% examples, 278948 words/s, in_qsize 0, out_qsize 0
2016-12-12 15:37:54,956: INFO: PROGRESS: at 16.47% examples, 284101 words/s, in_qsize 2, out_qsize 1
2016-12-12 15:37:55,934: INFO: PROGRESS: at 18.60% examples, 285781 words/s, in_qsize 6, out_qsize 1
2016-12-12 15:37:56,933: INFO: PROGRESS: at 20.84% examples, 288045 words/s, in_qsize 6, out_qsize 0
2016-12-12 15:37:57,973: INFO: PROGRESS: at 23.03% examples, 289083 words/s, in_qsize 6, out_qsize 2
2016-12-12 15:37:58,993: INFO: PROGRESS: at 24.87% examples, 285990 words/s, in_qsize 6, out_qsize 1
2016-12-12 15:38:00,006: INFO: PROGRESS: at 27.17% examples, 288266 words/s, in_qsize 4, out_qsize 1
2016-12-12 15:38:01,081: INFO: PROGRESS: at 29.52% examples, 290197 words/s, in_qsize 1, out_qsize 2
2016-12-12 15:38:02,065: INFO: PROGRESS: at 31.88% examples, 292344 words/s, in_qsize 6, out_qsize 0
2016-12-12 15:38:03,188: INFO: PROGRESS: at 34.01% examples, 291356 words/s, in_qsize 2, out_qsize 2
2016-12-12 15:38:04,161: INFO: PROGRESS: at 36.02% examples, 290805 words/s, in_qsize 6, out_qsize 0
2016-12-12 15:38:05,174: INFO: PROGRESS: at 38.26% examples, 292174 words/s, in_qsize 3, out_qsize 0
2016-12-12 15:38:06,214: INFO: PROGRESS: at 40.56% examples, 293297 words/s, in_qsize 4, out_qsize 1
2016-12-12 15:38:07,201: INFO: PROGRESS: at 42.69% examples, 293428 words/s, in_qsize 4, out_qsize 1
2016-12-12 15:38:08,266: INFO: PROGRESS: at 44.65% examples, 292108 words/s, in_qsize 1, out_qsize 1
2016-12-12 15:38:09,295: INFO: PROGRESS: at 46.83% examples, 292097 words/s, in_qsize 4, out_qsize 1
2016-12-12 15:38:10,315: INFO: PROGRESS: at 49.13% examples, 292968 words/s, in_qsize 2, out_qsize 2
2016-12-12 15:38:11,326: INFO: PROGRESS: at 51.37% examples, 293621 words/s, in_qsize 5, out_qsize 0
2016-12-12 15:38:12,367: INFO: PROGRESS: at 53.39% examples, 292777 words/s, in_qsize 2, out_qsize 2
2016-12-12 15:38:13,348: INFO: PROGRESS: at 55.35% examples, 292187 words/s, in_qsize 5, out_qsize 0
2016-12-12 15:38:14,349: INFO: PROGRESS: at 57.31% examples, 291656 words/s, in_qsize 6, out_qsize 0
2016-12-12 15:38:15,374: INFO: PROGRESS: at 59.50% examples, 292019 words/s, in_qsize 6, out_qsize 0
2016-12-12 15:38:16,403: INFO: PROGRESS: at 61.68% examples, 292318 words/s, in_qsize 4, out_qsize 2
2016-12-12 15:38:17,401: INFO: PROGRESS: at 63.81% examples, 292275 words/s, in_qsize 6, out_qsize 0
2016-12-12 15:38:18,410: INFO: PROGRESS: at 65.71% examples, 291495 words/s, in_qsize 4, out_qsize 1
2016-12-12 15:38:19,433: INFO: PROGRESS: at 67.62% examples, 290443 words/s, in_qsize 6, out_qsize 0
2016-12-12 15:38:20,473: INFO: PROGRESS: at 69.58% examples, 289655 words/s, in_qsize 6, out_qsize 2
2016-12-12 15:38:21,589: INFO: PROGRESS: at 71.71% examples, 289388 words/s, in_qsize 2, out_qsize 2
2016-12-12 15:38:22,533: INFO: PROGRESS: at 73.78% examples, 289366 words/s, in_qsize 0, out_qsize 1
2016-12-12 15:38:23,611: INFO: PROGRESS: at 75.46% examples, 287542 words/s, in_qsize 5, out_qsize 1
2016-12-12 15:38:24,614: INFO: PROGRESS: at 77.25% examples, 286609 words/s, in_qsize 3, out_qsize 0
2016-12-12 15:38:25,609: INFO: PROGRESS: at 79.33% examples, 286732 words/s, in_qsize 5, out_qsize 1
2016-12-12 15:38:26,621: INFO: PROGRESS: at 81.40% examples, 286595 words/s, in_qsize 2, out_qsize 0
2016-12-12 15:38:27,625: INFO: PROGRESS: at 83.53% examples, 286807 words/s, in_qsize 6, out_qsize 0
2016-12-12 15:38:28,683: INFO: PROGRESS: at 85.32% examples, 285651 words/s, in_qsize 5, out_qsize 3
2016-12-12 15:38:29,729: INFO: PROGRESS: at 87.56% examples, 286175 words/s, in_qsize 6, out_qsize 1
2016-12-12 15:38:30,706: INFO: PROGRESS: at 89.86% examples, 286920 words/s, in_qsize 5, out_qsize 0
2016-12-12 15:38:31,714: INFO: PROGRESS: at 92.10% examples, 287368 words/s, in_qsize 6, out_qsize 0
2016-12-12 15:38:32,756: INFO: PROGRESS: at 94.40% examples, 288070 words/s, in_qsize 4, out_qsize 2
2016-12-12 15:38:33,755: INFO: PROGRESS: at 96.30% examples, 287543 words/s, in_qsize 1, out_qsize 0
2016-12-12 15:38:34,802: INFO: PROGRESS: at 98.71% examples, 288375 words/s, in_qsize 4, out_qsize 0
2016-12-12 15:38:35,286: INFO: worker thread finished; awaiting finish of 2 more threads
2016-12-12 15:38:35,286: INFO: worker thread finished; awaiting finish of 1 more threads
Word2Vec(vocab=29982, size=200, alpha=0.025)
【国家】和【国务院】的相似度为: 0.387535493256
-----
2016-12-12 15:38:35,293: INFO: worker thread finished; awaiting finish of 0 more threads
2016-12-12 15:38:35,293: INFO: training on 17805780 raw words (14021191 effective words) took 48.5s, 289037 effective words/s
2016-12-12 15:38:35,293: INFO: precomputing L2-norms of word weight vectors
和【控烟】最相关的词有:
禁烟 0.6038454175
防烟 0.585186183453
执行 0.530897378922
烟控 0.516572892666
广而告之 0.508533298969
履约 0.507428050041
执法 0.494115233421
禁烟令 0.471616715193
修法 0.465247869492
该项 0.457907706499
落实 0.457776963711
控制 0.455987215042
这方面 0.450040221214
立法 0.44820779562
控烟办 0.436062157154
执行力 0.432559013367
控烟会 0.430508673191
进展 0.430286765099
监管 0.429748386145
惩罚 0.429243773222
-----
书-不错,质量-
生存 0.613928854465
稳定 0.595371186733
整体 0.592055797577
----
不合群的词: 很
-----
2016-12-12 15:38:35,515: INFO: saving Word2Vec object under 书评.model, separately None
2016-12-12 15:38:35,515: INFO: not storing attribute syn0norm
2016-12-12 15:38:35,515: INFO: not storing attribute cum_table
2016-12-12 15:38:36,490: INFO: saved 书评.model
Process finished with exit code 0

python初步实现word2vec操作

python初步实现word2vec操作

python初步实现word2vec操作

python初步实现word2vec操作

以上这篇python初步实现word2vec操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
在Python中封装GObject模块进行图形化程序编程的教程
Apr 14 Python
Linux下使用python自动修改本机网关代码分享
May 21 Python
python 从csv读数据到mysql的实例
Jun 21 Python
python爬虫基础教程:requests库(二)代码实例
Apr 09 Python
详解用python写一个抽奖程序
May 10 Python
对python3中的RE(正则表达式)-详细总结
Jul 23 Python
Python 从subprocess运行的子进程中实时获取输出的例子
Aug 14 Python
Python3.5 win10环境下导入kera/tensorflow报错的解决方法
Dec 19 Python
Python for循环与getitem的关系详解
Jan 02 Python
pyinstaller还原python代码过程图解
Jan 08 Python
pytorch 实现删除tensor中的指定行列
Jan 13 Python
详解Python yaml模块
Sep 23 Python
Python生成随机验证码代码实例解析
Jun 09 #Python
在python下实现word2vec词向量训练与加载实例
Jun 09 #Python
Python实现寻找回文数字过程解析
Jun 09 #Python
pycharm 关掉syntax检查操作
Jun 09 #Python
Python控制台实现交互式环境执行
Jun 09 #Python
使用pycharm和pylint检查python代码规范操作
Jun 09 #Python
Python基于数列实现购物车程序过程详解
Jun 09 #Python
You might like
Win2003服务器安全加固设置--进一步提高服务器安全性
2007/05/23 PHP
php 格式化数字的时候注意数字的范围
2010/04/13 PHP
php中的curl_multi系列函数使用例子
2014/07/29 PHP
WordPress后台中实现图片上传功能的实例讲解
2016/01/11 PHP
Zend Framework动作控制器用法示例
2016/12/09 PHP
浅谈PHP面向对象之访问者模式+组合模式
2017/05/22 PHP
Firebug入门指南(Firefox浏览器)
2010/08/21 Javascript
javascript生成随机颜色示例代码
2014/05/05 Javascript
Jquery实现仿腾讯微博发表广播
2014/11/17 Javascript
javascript事件冒泡实例分析
2015/05/13 Javascript
基于jquery实现图片放大功能
2016/05/07 Javascript
jQuery css() 方法动态修改CSS属性
2016/09/25 Javascript
原生JavaScript实现精美的淘宝轮播图效果示例【附demo源码下载】
2017/05/27 Javascript
原生js jquery ajax请求以及jsonp的调用方法
2017/08/04 jQuery
AngularJS标签页tab选项卡切换功能经典实例详解
2018/05/16 Javascript
详解Vue-Router源码分析路由实现原理
2019/05/15 Javascript
详解Vue 如何监听Array的变化
2019/06/06 Javascript
Python天气预报采集器实现代码(网页爬虫)
2012/10/07 Python
Python正则表达式匹配中文用法示例
2017/01/17 Python
Python datetime和unix时间戳之间相互转换的讲解
2019/04/01 Python
对Python 简单串口收发GUI界面的实例详解
2019/06/12 Python
django 2.2和mysql使用的常见问题
2019/07/18 Python
pytorch中获取模型input/output shape实例
2019/12/30 Python
python 安装教程之Pycharm安装及配置字体主题,换行,自动更新
2020/03/13 Python
Python实现删除某列中含有空值的行的示例代码
2020/07/20 Python
Python实现画图软件功能方法详解
2020/07/28 Python
英国航空官网:British Airways
2016/09/11 全球购物
英国女装网上商店:I Saw It First
2018/10/18 全球购物
同步和异步有何异同,在什么情况下分别使用他们?举例说明
2014/02/27 面试题
腾讯公司的一个sql题
2013/01/22 面试题
幼教简历自我评价
2014/01/28 职场文书
职工运动会邀请函
2014/02/02 职场文书
2014年个人工作总结模板
2014/12/15 职场文书
小学中队活动总结
2015/05/11 职场文书
贫民窟的百万富翁观后感
2015/06/09 职场文书
捐书仪式主持词
2015/07/04 职场文书