Python Gluon参数和模块命名操作教程


Posted in Python onDecember 18, 2019

本文实例讲述了Python Gluon参数和模块命名操作。分享给大家供大家参考,具体如下:

Gluon参数和模块命名教程

在gluon里,每个参数和块都有一个名字(和前缀)。参数名可以由用户指定,block名也可以由用户指定,也可以自动创建。

本教程中,我们将讨论命名方面的最佳实践。首先,import MXNet和Gluon

from __future__ import print_function
import mxnet as mx
from mxnet import gluon

Blocks命名

在创建block时,可以指定一个前缀给它:

mydense = gluon.nn.Dense(100, prefix='mydense_')
print(mydense.prefix)
mydense_

若没有指定前缀,gluon会自动生成一个前缀

dense0 = gluon.nn.Dense(100)
print(dense0.prefix)
dense0_

当你创建更多同类块时,它们将递增后缀命名,以避免冲突:

dense1 = gluon.nn.Dense(100)
print(dense1.prefix)
dense1_

参数命名

blocks中的参数将用过将block的前缀添加到参数的名称来命名:

print(dense0.collect_params())
dense0_ (
 Parameter dense0_weight (shape=(100, 0), dtype=<type 'numpy.float32'>)
 Parameter dense0_bias (shape=(100,), dtype=<type 'numpy.float32'>)
)

名称空间

为了管理嵌套block的名称,每个块附加有一个name_scope(名称空间)。在name_scope中创建的block都会在其名称前加上父block的名称。

我们将定义一个简单的神经网络来说明这点:

class Model(gluon.Block):
 def __init__(self, **kwargs):
  super(Model, self).__init__(**kwargs)
  with self.name_scope():
   self.dense0 = gluon.nn.Dense(20)
   self.dense1 = gluon.nn.Dense(20)
   self.mydense = gluon.nn.Dense(20, prefix='mydense_')
 def forward(self, x):
  x = mx.nd.relu(self.dense0(x))
  x = mx.nd.relu(self.dense1(x))
  return mx.nd.relu(self.mydense(x))

现在实例化这个神经网络

  • 注意:model0.dense0的名称是model0_dense0_而非dense0_
  • 注意:我们指定model.mydense的前缀为mydense_,它的父类前缀会自动生成并添加到前面变成model0_mydense_

这里的名称前缀和变量名model0没有关系,这里就算把model0换成其他变量名比如net,前缀还是model?,? 表示这是一个递增的数字,这里的名称前缀和class Model有关 若将类名Model换成Hodel,那么后面的前缀都会变成 hodel?

model0 = Model()
model0.initialize()
model0(mx.nd.zeros((1, 20)))
print(model0.prefix)
print(model0.dense0.prefix)
print(model0.dense1.prefix)
print(model0.mydense.prefix)
model0_
model0_dense0_
model0_dense1_
model0_mydense_

若我们再次实例化Model,在Dense前会生成一个不同的名称。

  • 注意:model1.dense0的名称依然是dense0_而非dense2_,遵循之前在model0中创建的dense层的命名规则。这是因为每个model的命名空间是相互独立
model1 = Model()
print(model1.prefix)
print(model1.dense0.prefix)
print(model1.dense1.prefix)
print(model1.mydense.prefix)
model1_
model1_dense0_
model1_dense1_
model1_mydense_

建议手动为顶层的model指定一个前缀,即model = Model(prefix=‘mymodel_'),以避免命名时可能出现的混淆。

相同的规则同样适用于像Sequential这类容器block.name_scope 既可以在__init__内使用,也可以在__init__ 外使用:

注意:这里Sequential也有参数prefix,是可以自己指定名称的,不指定的话就叫Sequential

net = gluon.nn.Sequential()
with net.name_scope():
 net.add(gluon.nn.Dense(20))
 net.add(gluon.nn.Dense(20))
print(net.prefix)
print(net[0].prefix)
print(net[1].prefix)
sequential0_
sequential0_dense0_
sequential0_dense1_

gluon.model_zoo也一样

net = gluon.nn.Sequential()
with net.name_scope():
 net.add(gluon.model_zoo.vision.alexnet(pretrained=True))
 net.add(gluon.model_zoo.vision.alexnet(pretrained=True))
print(net.prefix, net[0].prefix, net[1].prefix)
sequential1_ sequential1_alexnet0_ sequential1_alexnet1_

保存和载入

由于model0和model1有不同的前缀,所以它们的参数是有不同名字的:

print(model0.collect_params(), '\n')
print(model1.collect_params())
model0_ (
 Parameter model0_dense0_weight (shape=(20L, 20L), dtype=<type 'numpy.float32'>)
 Parameter model0_dense0_bias (shape=(20L,), dtype=<type 'numpy.float32'>)
 Parameter model0_dense1_weight (shape=(20L, 20L), dtype=<type 'numpy.float32'>)
 Parameter model0_dense1_bias (shape=(20L,), dtype=<type 'numpy.float32'>)
 Parameter model0_mydense_weight (shape=(20L, 20L), dtype=<type 'numpy.float32'>)
 Parameter model0_mydense_bias (shape=(20L,), dtype=<type 'numpy.float32'>)
) 
model1_ (
 Parameter model1_dense0_weight (shape=(20, 0), dtype=<type 'numpy.float32'>)
 Parameter model1_dense0_bias (shape=(20,), dtype=<type 'numpy.float32'>)
 Parameter model1_dense1_weight (shape=(20, 0), dtype=<type 'numpy.float32'>)
 Parameter model1_dense1_bias (shape=(20,), dtype=<type 'numpy.float32'>)
 Parameter model1_mydense_weight (shape=(20, 0), dtype=<type 'numpy.float32'>)
 Parameter model1_mydense_bias (shape=(20,), dtype=<type 'numpy.float32'>)
)

若你尝试将model0的参数载入到model1中,你将会得到一个名称不匹配的错误

model0.collect_params().save('model.params')
try:
 model1.collect_params().load('model.params', mx.cpu())
except Exception as e:
 print(e)

Parameter 'model1_dense0_weight' is missing in file 'model.params', which contains parameters: 'model0_mydense_weight', 'model0_dense1_bias', 'model0_dense1_weight', 'model0_dense0_weight', 'model0_dense0_bias', 'model0_mydense_bias'. Please make sure source and target networks have the same prefix.

为了解决这个问题,我们使用save_parameters/load_parameters而不是 collect_paramssave/load. save_parameters。使用模型结构而非参数名称来匹配参数。

model0.save_parameters('model.params')
model1.load_parameters('model.params')
print(mx.nd.load('model.params').keys())
['dense0.bias', 'mydense.bias', 'dense1.bias', 'dense1.weight', 'dense0.weight', 'mydense.weight']

替换网络中的block并进行fine-turning

有时需要加载一些预训练的模型,并替换其中某些block并进行fine-turning。

For example, the alexnet in model zoo has 1000 output dimensions, but maybe you only have 100 classes in your application.

例如,alexnet有1000个输出维度但你只有100类。

我们首先载入预训练的AlexNet

  • 在Gluon Model Zoo,所有图像分类模型的格式都是特征提取层叫 features ,输出层叫 output.
  • 注意到输出层是一个dense block,有1000个维度的输出
alexnet = gluon.model_zoo.vision.alexnet(pretrained=True)
print(alexnet.output)
print(alexnet.output.prefix)
Dense(4096 -> 1000, linear)
alexnet0_dense2_

改变输出为100维,使用一个新block替换它

with alexnet.name_scope():
 alexnet.output = gluon.nn.Dense(100)
alexnet.output.initialize()
print(alexnet.output)
print(alexnet.output.prefix)
Dense(None -> 100, linear)
alexnet0_dense3_

原文:http://mxnet.incubator.apache.org/versions/master/tutorials/gluon/naming.html

更多关于Python相关内容可查看本站专题:《Python数学运算技巧总结》、《Python图片操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

Python 相关文章推荐
Python实现去除代码前行号的方法
Mar 10 Python
编写简单的Python程序来判断文本的语种
Apr 07 Python
详解Django中Request对象的相关用法
Jul 17 Python
Python学习笔记之if语句的使用示例
Oct 23 Python
python 中字典嵌套列表的方法
Jul 03 Python
Python实现登陆文件验证方法
Oct 06 Python
python实现文本界面网络聊天室
Dec 12 Python
Python 把序列转换为元组的函数tuple方法
Jun 27 Python
修改 CentOS 6.x 上默认Python的方法
Sep 06 Python
python GUI库图形界面开发之PyQt5开发环境配置与基础使用
Feb 25 Python
Python @property及getter setter原理详解
Mar 31 Python
python实现学生信息管理系统(精简版)
Nov 27 Python
python turtle 绘制太极图的实例
Dec 18 #Python
Python使用gluon/mxnet模块实现的mnist手写数字识别功能完整示例
Dec 18 #Python
简单了解Python读取大文件代码实例
Dec 18 #Python
python 比较2张图片的相似度的方法示例
Dec 18 #Python
使用Python的Turtle库绘制森林的实例
Dec 18 #Python
python3 requests库实现多图片爬取教程
Dec 18 #Python
在notepad++中实现直接运行python代码
Dec 18 #Python
You might like
php download.php实现代码 跳转到下载文件(response.redirect)
2009/08/26 PHP
PHP正则的Unknown Modifier错误解决方法
2010/03/02 PHP
PHP与javascript实现变量交互的示例代码
2013/07/23 PHP
apache中为php 设置虚拟目录
2014/12/17 PHP
PHP使用递归生成文章树
2015/04/21 PHP
如何正确配置Nginx + PHP
2016/07/15 PHP
thinkphp Apache配置重启Apache1 restart 出错解决办法
2017/02/15 PHP
PHP进阶学习之反射基本概念与用法分析
2019/06/18 PHP
通用javascript脚本函数库 方便开发
2009/10/13 Javascript
Javascript公共脚本库系列(一): 弹出层脚本
2011/02/24 Javascript
js实现图片漂浮效果的方法
2015/03/02 Javascript
jquery中实现时间戳与日期相互转换
2016/04/12 Javascript
vue引入swiper插件的使用实例
2017/07/19 Javascript
原生JS进行前后端同构
2018/04/22 Javascript
使用electron实现百度网盘悬浮窗口功能的示例代码
2018/10/24 Javascript
jQuery+ajax实现批量删除功能完整示例
2019/06/06 jQuery
微信小程序地图绘制线段并且测量(实例代码)
2020/01/02 Javascript
[49:11]完美世界DOTA2联赛PWL S3 INK ICE vs DLG 第二场 12.20
2020/12/23 DOTA
在Python的Flask框架中实现单元测试的教程
2015/04/20 Python
python MySQLdb Windows下安装教程及问题解决方法
2015/05/09 Python
python数字图像处理之骨架提取与分水岭算法
2018/04/27 Python
详解Django中CBV(Class Base Views)模型源码分析
2019/02/25 Python
使用Python开发个京东上抢口罩的小实例(仅作技术研究学习使用)
2020/03/10 Python
python对接ihuyi实现短信验证码发送
2020/05/10 Python
序列化Python对象的方法
2020/08/01 Python
Python基于staticmethod装饰器标示静态方法
2020/10/17 Python
关于pycharm 切换 python3.9 报错 ‘HTMLParser‘ object has no attribute ‘unescape‘ 的问题
2020/11/24 Python
Strathberry苏贝瑞中国官网:西班牙高级工匠手工打造
2020/10/19 全球购物
会计毕业生求职简历的自我评价
2013/10/20 职场文书
小学生感恩演讲稿
2014/04/25 职场文书
感恩教育月活动总结
2014/07/07 职场文书
建党伟业观后感
2015/06/01 职场文书
2019学子的答谢词范本!
2019/07/05 职场文书
Matplotlib绘制混淆矩阵的实现
2021/05/27 Python
关于springboot配置druid数据源不生效问题(踩坑记)
2021/09/25 Java/Android
通过T-SQL语句创建游标与实现数据库加解密功能
2022/03/16 SQL Server