TensorFlow车牌识别完整版代码(含车牌数据集)


Posted in Python onAugust 05, 2019

在之前发布的一篇博文《MNIST数据集实现车牌识别--初步演示版》中,我们演示了如何使用TensorFlow进行车牌识别,但是,当时采用的数据集是MNIST数字手写体,只能分类0-9共10个数字,无法分类省份简称和字母,局限性较大,无实际意义。

经过图像定位分割处理,博主收集了相关省份简称和26个字母的图片数据集,结合前述博文中贴出的python+TensorFlow代码,实现了完整的车牌识别功能。本着分享精神,在此送上全部代码和车牌数据集。

车牌数据集下载地址(约4000张图片):tf_car_license_dataset_3water.rar

省份简称训练+识别代码(保存文件名为train-license-province.py)(拷贝代码请务必注意python文本缩进,只要有一处缩进错误,就无法得到正确结果,或者出现异常):

#!/usr/bin/python3.5
# -*- coding: utf-8 -*- 
 
import sys
import os
import time
import random
 
import numpy as np
import tensorflow as tf
 
from PIL import Image
 
 
SIZE = 1280
WIDTH = 32
HEIGHT = 40
NUM_CLASSES = 6
iterations = 300
 
SAVER_DIR = "train-saver/province/"
 
PROVINCES = ("京","闽","粤","苏","沪","浙")
nProvinceIndex = 0
 
time_begin = time.time()
 
 
# 定义输入节点,对应于图片像素值矩阵集合和图片标签(即所代表的数字)
x = tf.placeholder(tf.float32, shape=[None, SIZE])
y_ = tf.placeholder(tf.float32, shape=[None, NUM_CLASSES])
 
x_image = tf.reshape(x, [-1, WIDTH, HEIGHT, 1])
 
 
# 定义卷积函数
def conv_layer(inputs, W, b, conv_strides, kernel_size, pool_strides, padding):
  L1_conv = tf.nn.conv2d(inputs, W, strides=conv_strides, padding=padding)
  L1_relu = tf.nn.relu(L1_conv + b)
  return tf.nn.max_pool(L1_relu, ksize=kernel_size, strides=pool_strides, padding='SAME')
 
# 定义全连接层函数
def full_connect(inputs, W, b):
  return tf.nn.relu(tf.matmul(inputs, W) + b)
 
 
if __name__ =='__main__' and sys.argv[1]=='train':
  # 第一次遍历图片目录是为了获取图片总数
  input_count = 0
  for i in range(0,NUM_CLASSES):
    dir = './train_images/training-set/chinese-characters/%s/' % i      # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        input_count += 1
 
  # 定义对应维数和各维长度的数组
  input_images = np.array([[0]*SIZE for i in range(input_count)])
  input_labels = np.array([[0]*NUM_CLASSES for i in range(input_count)])
 
  # 第二次遍历图片目录是为了生成图片数据和标签
  index = 0
  for i in range(0,NUM_CLASSES):
    dir = './train_images/training-set/chinese-characters/%s/' % i     # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        filename = dir + filename
        img = Image.open(filename)
        width = img.size[0]
        height = img.size[1]
        for h in range(0, height):
          for w in range(0, width):
            # 通过这样的处理,使数字的线条变细,有利于提高识别准确率
            if img.getpixel((w, h)) > 230:
              input_images[index][w+h*width] = 0
            else:
              input_images[index][w+h*width] = 1
        input_labels[index][i] = 1
        index += 1
 
  # 第一次遍历图片目录是为了获取图片总数
  val_count = 0
  for i in range(0,NUM_CLASSES):
    dir = './train_images/validation-set/chinese-characters/%s/' % i      # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        val_count += 1
 
  # 定义对应维数和各维长度的数组
  val_images = np.array([[0]*SIZE for i in range(val_count)])
  val_labels = np.array([[0]*NUM_CLASSES for i in range(val_count)])
 
  # 第二次遍历图片目录是为了生成图片数据和标签
  index = 0
  for i in range(0,NUM_CLASSES):
    dir = './train_images/validation-set/chinese-characters/%s/' % i     # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        filename = dir + filename
        img = Image.open(filename)
        width = img.size[0]
        height = img.size[1]
        for h in range(0, height):
          for w in range(0, width):
            # 通过这样的处理,使数字的线条变细,有利于提高识别准确率
            if img.getpixel((w, h)) > 230:
              val_images[index][w+h*width] = 0
            else:
              val_images[index][w+h*width] = 1
        val_labels[index][i] = 1
        index += 1
  
  with tf.Session() as sess:
    # 第一个卷积层
    W_conv1 = tf.Variable(tf.truncated_normal([8, 8, 1, 16], stddev=0.1), name="W_conv1")
    b_conv1 = tf.Variable(tf.constant(0.1, shape=[16]), name="b_conv1")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 2, 2, 1]
    pool_strides = [1, 2, 2, 1]
    L1_pool = conv_layer(x_image, W_conv1, b_conv1, conv_strides, kernel_size, pool_strides, padding='SAME')
 
    # 第二个卷积层
    W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 16, 32], stddev=0.1), name="W_conv2")
    b_conv2 = tf.Variable(tf.constant(0.1, shape=[32]), name="b_conv2")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 1, 1, 1]
    pool_strides = [1, 1, 1, 1]
    L2_pool = conv_layer(L1_pool, W_conv2, b_conv2, conv_strides, kernel_size, pool_strides, padding='SAME')
 
 
    # 全连接层
    W_fc1 = tf.Variable(tf.truncated_normal([16 * 20 * 32, 512], stddev=0.1), name="W_fc1")
    b_fc1 = tf.Variable(tf.constant(0.1, shape=[512]), name="b_fc1")
    h_pool2_flat = tf.reshape(L2_pool, [-1, 16 * 20*32])
    h_fc1 = full_connect(h_pool2_flat, W_fc1, b_fc1)
 
 
    # dropout
    keep_prob = tf.placeholder(tf.float32)
 
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
 
 
    # readout层
    W_fc2 = tf.Variable(tf.truncated_normal([512, NUM_CLASSES], stddev=0.1), name="W_fc2")
    b_fc2 = tf.Variable(tf.constant(0.1, shape=[NUM_CLASSES]), name="b_fc2")
 
    # 定义优化器和训练op
    y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
    train_step = tf.train.AdamOptimizer((1e-4)).minimize(cross_entropy)
 
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
 
    # 初始化saver
    saver = tf.train.Saver()
 
    sess.run(tf.global_variables_initializer())
 
    time_elapsed = time.time() - time_begin
    print("读取图片文件耗费时间:%d秒" % time_elapsed)
    time_begin = time.time()
 
    print ("一共读取了 %s 个训练图像, %s 个标签" % (input_count, input_count))
 
    # 设置每次训练op的输入个数和迭代次数,这里为了支持任意图片总数,定义了一个余数remainder,譬如,如果每次训练op的输入个数为60,图片总数为150张,则前面两次各输入60张,最后一次输入30张(余数30)
    batch_size = 60
    iterations = iterations
    batches_count = int(input_count / batch_size)
    remainder = input_count % batch_size
    print ("训练数据集分成 %s 批, 前面每批 %s 个数据,最后一批 %s 个数据" % (batches_count+1, batch_size, remainder))
 
    # 执行训练迭代
    for it in range(iterations):
      # 这里的关键是要把输入数组转为np.array
      for n in range(batches_count):
        train_step.run(feed_dict={x: input_images[n*batch_size:(n+1)*batch_size], y_: input_labels[n*batch_size:(n+1)*batch_size], keep_prob: 0.5})
      if remainder > 0:
        start_index = batches_count * batch_size;
        train_step.run(feed_dict={x: input_images[start_index:input_count-1], y_: input_labels[start_index:input_count-1], keep_prob: 0.5})
 
      # 每完成五次迭代,判断准确度是否已达到100%,达到则退出迭代循环
      iterate_accuracy = 0
      if it%5 == 0:
        iterate_accuracy = accuracy.eval(feed_dict={x: val_images, y_: val_labels, keep_prob: 1.0})
        print ('第 %d 次训练迭代: 准确率 %0.5f%%' % (it, iterate_accuracy*100))
        if iterate_accuracy >= 0.9999 and it >= 150:
          break;
 
    print ('完成训练!')
    time_elapsed = time.time() - time_begin
    print ("训练耗费时间:%d秒" % time_elapsed)
    time_begin = time.time()
 
    # 保存训练结果
    if not os.path.exists(SAVER_DIR):
      print ('不存在训练数据保存目录,现在创建保存目录')
      os.makedirs(SAVER_DIR)
    saver_path = saver.save(sess, "%smodel.ckpt"%(SAVER_DIR))
 
 
 
if __name__ =='__main__' and sys.argv[1]=='predict':
  saver = tf.train.import_meta_graph("%smodel.ckpt.meta"%(SAVER_DIR))
  with tf.Session() as sess:
    model_file=tf.train.latest_checkpoint(SAVER_DIR)
    saver.restore(sess, model_file)
 
    # 第一个卷积层
    W_conv1 = sess.graph.get_tensor_by_name("W_conv1:0")
    b_conv1 = sess.graph.get_tensor_by_name("b_conv1:0")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 2, 2, 1]
    pool_strides = [1, 2, 2, 1]
    L1_pool = conv_layer(x_image, W_conv1, b_conv1, conv_strides, kernel_size, pool_strides, padding='SAME')
 
    # 第二个卷积层
    W_conv2 = sess.graph.get_tensor_by_name("W_conv2:0")
    b_conv2 = sess.graph.get_tensor_by_name("b_conv2:0")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 1, 1, 1]
    pool_strides = [1, 1, 1, 1]
    L2_pool = conv_layer(L1_pool, W_conv2, b_conv2, conv_strides, kernel_size, pool_strides, padding='SAME')
 
 
    # 全连接层
    W_fc1 = sess.graph.get_tensor_by_name("W_fc1:0")
    b_fc1 = sess.graph.get_tensor_by_name("b_fc1:0")
    h_pool2_flat = tf.reshape(L2_pool, [-1, 16 * 20*32])
    h_fc1 = full_connect(h_pool2_flat, W_fc1, b_fc1)
 
 
    # dropout
    keep_prob = tf.placeholder(tf.float32)
 
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
 
 
    # readout层
    W_fc2 = sess.graph.get_tensor_by_name("W_fc2:0")
    b_fc2 = sess.graph.get_tensor_by_name("b_fc2:0")
 
    # 定义优化器和训练op
    conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
 
    for n in range(1,2):
      path = "test_images/%s.bmp" % (n)
      img = Image.open(path)
      width = img.size[0]
      height = img.size[1]
 
      img_data = [[0]*SIZE for i in range(1)]
      for h in range(0, height):
        for w in range(0, width):
          if img.getpixel((w, h)) < 190:
            img_data[0][w+h*width] = 1
          else:
            img_data[0][w+h*width] = 0
      
      result = sess.run(conv, feed_dict = {x: np.array(img_data), keep_prob: 1.0})
      max1 = 0
      max2 = 0
      max3 = 0
      max1_index = 0
      max2_index = 0
      max3_index = 0
      for j in range(NUM_CLASSES):
        if result[0][j] > max1:
          max1 = result[0][j]
          max1_index = j
          continue
        if (result[0][j]>max2) and (result[0][j]<=max1):
          max2 = result[0][j]
          max2_index = j
          continue
        if (result[0][j]>max3) and (result[0][j]<=max2):
          max3 = result[0][j]
          max3_index = j
          continue
      
      nProvinceIndex = max1_index
      print ("概率: [%s %0.2f%%]  [%s %0.2f%%]  [%s %0.2f%%]" % (PROVINCES[max1_index],max1*100, PROVINCES[max2_index],max2*100, PROVINCES[max3_index],max3*100))
      
    print ("省份简称是: %s" % PROVINCES[nProvinceIndex])

城市代号训练+识别代码(保存文件名为train-license-letters.py):

#!/usr/bin/python3.5
# -*- coding: utf-8 -*- 
 
import sys
import os
import time
import random
 
import numpy as np
import tensorflow as tf
 
from PIL import Image
 
 
SIZE = 1280
WIDTH = 32
HEIGHT = 40
NUM_CLASSES = 26
iterations = 500
 
SAVER_DIR = "train-saver/letters/"
 
LETTERS_DIGITS = ("A","B","C","D","E","F","G","H","J","K","L","M","N","P","Q","R","S","T","U","V","W","X","Y","Z","I","O")
license_num = ""
 
time_begin = time.time()
 
 
# 定义输入节点,对应于图片像素值矩阵集合和图片标签(即所代表的数字)
x = tf.placeholder(tf.float32, shape=[None, SIZE])
y_ = tf.placeholder(tf.float32, shape=[None, NUM_CLASSES])
 
x_image = tf.reshape(x, [-1, WIDTH, HEIGHT, 1])
 
 
# 定义卷积函数
def conv_layer(inputs, W, b, conv_strides, kernel_size, pool_strides, padding):
  L1_conv = tf.nn.conv2d(inputs, W, strides=conv_strides, padding=padding)
  L1_relu = tf.nn.relu(L1_conv + b)
  return tf.nn.max_pool(L1_relu, ksize=kernel_size, strides=pool_strides, padding='SAME')
 
# 定义全连接层函数
def full_connect(inputs, W, b):
  return tf.nn.relu(tf.matmul(inputs, W) + b)
 
 
if __name__ =='__main__' and sys.argv[1]=='train':
  # 第一次遍历图片目录是为了获取图片总数
  input_count = 0
  for i in range(0+10,NUM_CLASSES+10):
    dir = './train_images/training-set/letters/%s/' % i      # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        input_count += 1
 
  # 定义对应维数和各维长度的数组
  input_images = np.array([[0]*SIZE for i in range(input_count)])
  input_labels = np.array([[0]*NUM_CLASSES for i in range(input_count)])
 
  # 第二次遍历图片目录是为了生成图片数据和标签
  index = 0
  for i in range(0+10,NUM_CLASSES+10):
    dir = './train_images/training-set/letters/%s/' % i     # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        filename = dir + filename
        img = Image.open(filename)
        width = img.size[0]
        height = img.size[1]
        for h in range(0, height):
          for w in range(0, width):
            # 通过这样的处理,使数字的线条变细,有利于提高识别准确率
            if img.getpixel((w, h)) > 230:
              input_images[index][w+h*width] = 0
            else:
              input_images[index][w+h*width] = 1
        #print ("i=%d, index=%d" % (i, index))
        input_labels[index][i-10] = 1
        index += 1
 
  # 第一次遍历图片目录是为了获取图片总数
  val_count = 0
  for i in range(0+10,NUM_CLASSES+10):
    dir = './train_images/validation-set/%s/' % i      # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        val_count += 1
 
  # 定义对应维数和各维长度的数组
  val_images = np.array([[0]*SIZE for i in range(val_count)])
  val_labels = np.array([[0]*NUM_CLASSES for i in range(val_count)])
 
  # 第二次遍历图片目录是为了生成图片数据和标签
  index = 0
  for i in range(0+10,NUM_CLASSES+10):
    dir = './train_images/validation-set/%s/' % i     # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        filename = dir + filename
        img = Image.open(filename)
        width = img.size[0]
        height = img.size[1]
        for h in range(0, height):
          for w in range(0, width):
            # 通过这样的处理,使数字的线条变细,有利于提高识别准确率
            if img.getpixel((w, h)) > 230:
              val_images[index][w+h*width] = 0
            else:
              val_images[index][w+h*width] = 1
        val_labels[index][i-10] = 1
        index += 1
  
  with tf.Session() as sess:
    # 第一个卷积层
    W_conv1 = tf.Variable(tf.truncated_normal([8, 8, 1, 16], stddev=0.1), name="W_conv1")
    b_conv1 = tf.Variable(tf.constant(0.1, shape=[16]), name="b_conv1")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 2, 2, 1]
    pool_strides = [1, 2, 2, 1]
    L1_pool = conv_layer(x_image, W_conv1, b_conv1, conv_strides, kernel_size, pool_strides, padding='SAME')
 
    # 第二个卷积层
    W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 16, 32], stddev=0.1), name="W_conv2")
    b_conv2 = tf.Variable(tf.constant(0.1, shape=[32]), name="b_conv2")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 1, 1, 1]
    pool_strides = [1, 1, 1, 1]
    L2_pool = conv_layer(L1_pool, W_conv2, b_conv2, conv_strides, kernel_size, pool_strides, padding='SAME')
 
 
    # 全连接层
    W_fc1 = tf.Variable(tf.truncated_normal([16 * 20 * 32, 512], stddev=0.1), name="W_fc1")
    b_fc1 = tf.Variable(tf.constant(0.1, shape=[512]), name="b_fc1")
    h_pool2_flat = tf.reshape(L2_pool, [-1, 16 * 20*32])
    h_fc1 = full_connect(h_pool2_flat, W_fc1, b_fc1)
 
 
    # dropout
    keep_prob = tf.placeholder(tf.float32)
 
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
 
 
    # readout层
    W_fc2 = tf.Variable(tf.truncated_normal([512, NUM_CLASSES], stddev=0.1), name="W_fc2")
    b_fc2 = tf.Variable(tf.constant(0.1, shape=[NUM_CLASSES]), name="b_fc2")
 
    # 定义优化器和训练op
    y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
    train_step = tf.train.AdamOptimizer((1e-4)).minimize(cross_entropy)
 
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
 
    sess.run(tf.global_variables_initializer())
 
    time_elapsed = time.time() - time_begin
    print("读取图片文件耗费时间:%d秒" % time_elapsed)
    time_begin = time.time()
 
    print ("一共读取了 %s 个训练图像, %s 个标签" % (input_count, input_count))
 
    # 设置每次训练op的输入个数和迭代次数,这里为了支持任意图片总数,定义了一个余数remainder,譬如,如果每次训练op的输入个数为60,图片总数为150张,则前面两次各输入60张,最后一次输入30张(余数30)
    batch_size = 60
    iterations = iterations
    batches_count = int(input_count / batch_size)
    remainder = input_count % batch_size
    print ("训练数据集分成 %s 批, 前面每批 %s 个数据,最后一批 %s 个数据" % (batches_count+1, batch_size, remainder))
 
    # 执行训练迭代
    for it in range(iterations):
      # 这里的关键是要把输入数组转为np.array
      for n in range(batches_count):
        train_step.run(feed_dict={x: input_images[n*batch_size:(n+1)*batch_size], y_: input_labels[n*batch_size:(n+1)*batch_size], keep_prob: 0.5})
      if remainder > 0:
        start_index = batches_count * batch_size;
        train_step.run(feed_dict={x: input_images[start_index:input_count-1], y_: input_labels[start_index:input_count-1], keep_prob: 0.5})
 
      # 每完成五次迭代,判断准确度是否已达到100%,达到则退出迭代循环
      iterate_accuracy = 0
      if it%5 == 0:
        iterate_accuracy = accuracy.eval(feed_dict={x: val_images, y_: val_labels, keep_prob: 1.0})
        print ('第 %d 次训练迭代: 准确率 %0.5f%%' % (it, iterate_accuracy*100))
        if iterate_accuracy >= 0.9999 and it >= iterations:
          break;
 
    print ('完成训练!')
    time_elapsed = time.time() - time_begin
    print ("训练耗费时间:%d秒" % time_elapsed)
    time_begin = time.time()
 
    # 保存训练结果
    if not os.path.exists(SAVER_DIR):
      print ('不存在训练数据保存目录,现在创建保存目录')
      os.makedirs(SAVER_DIR)
    # 初始化saver
    saver = tf.train.Saver()      
    saver_path = saver.save(sess, "%smodel.ckpt"%(SAVER_DIR))
 
 
 
if __name__ =='__main__' and sys.argv[1]=='predict':
  saver = tf.train.import_meta_graph("%smodel.ckpt.meta"%(SAVER_DIR))
  with tf.Session() as sess:
    model_file=tf.train.latest_checkpoint(SAVER_DIR)
    saver.restore(sess, model_file)
 
    # 第一个卷积层
    W_conv1 = sess.graph.get_tensor_by_name("W_conv1:0")
    b_conv1 = sess.graph.get_tensor_by_name("b_conv1:0")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 2, 2, 1]
    pool_strides = [1, 2, 2, 1]
    L1_pool = conv_layer(x_image, W_conv1, b_conv1, conv_strides, kernel_size, pool_strides, padding='SAME')
 
    # 第二个卷积层
    W_conv2 = sess.graph.get_tensor_by_name("W_conv2:0")
    b_conv2 = sess.graph.get_tensor_by_name("b_conv2:0")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 1, 1, 1]
    pool_strides = [1, 1, 1, 1]
    L2_pool = conv_layer(L1_pool, W_conv2, b_conv2, conv_strides, kernel_size, pool_strides, padding='SAME')
 
 
    # 全连接层
    W_fc1 = sess.graph.get_tensor_by_name("W_fc1:0")
    b_fc1 = sess.graph.get_tensor_by_name("b_fc1:0")
    h_pool2_flat = tf.reshape(L2_pool, [-1, 16 * 20*32])
    h_fc1 = full_connect(h_pool2_flat, W_fc1, b_fc1)
 
 
    # dropout
    keep_prob = tf.placeholder(tf.float32)
 
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
 
 
    # readout层
    W_fc2 = sess.graph.get_tensor_by_name("W_fc2:0")
    b_fc2 = sess.graph.get_tensor_by_name("b_fc2:0")
 
    # 定义优化器和训练op
    conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
 
    for n in range(2,3):
      path = "test_images/%s.bmp" % (n)
      img = Image.open(path)
      width = img.size[0]
      height = img.size[1]
 
      img_data = [[0]*SIZE for i in range(1)]
      for h in range(0, height):
        for w in range(0, width):
          if img.getpixel((w, h)) < 190:
            img_data[0][w+h*width] = 1
          else:
            img_data[0][w+h*width] = 0
      
      result = sess.run(conv, feed_dict = {x: np.array(img_data), keep_prob: 1.0})
      
      max1 = 0
      max2 = 0
      max3 = 0
      max1_index = 0
      max2_index = 0
      max3_index = 0
      for j in range(NUM_CLASSES):
        if result[0][j] > max1:
          max1 = result[0][j]
          max1_index = j
          continue
        if (result[0][j]>max2) and (result[0][j]<=max1):
          max2 = result[0][j]
          max2_index = j
          continue
        if (result[0][j]>max3) and (result[0][j]<=max2):
          max3 = result[0][j]
          max3_index = j
          continue
      
      if n == 3:
        license_num += "-"
      license_num = license_num + LETTERS_DIGITS[max1_index]
      print ("概率: [%s %0.2f%%]  [%s %0.2f%%]  [%s %0.2f%%]" % (LETTERS_DIGITS[max1_index],max1*100, LETTERS_DIGITS[max2_index],max2*100, LETTERS_DIGITS[max3_index],max3*100))
      
    print ("城市代号是: 【%s】" % license_num)

车牌编号训练+识别代码(保存文件名为train-license-digits.py):

#!/usr/bin/python3.5
# -*- coding: utf-8 -*- 
 
import sys
import os
import time
import random
 
import numpy as np
import tensorflow as tf
 
from PIL import Image
 
 
SIZE = 1280
WIDTH = 32
HEIGHT = 40
NUM_CLASSES = 34
iterations = 1000
 
SAVER_DIR = "train-saver/digits/"
 
LETTERS_DIGITS = ("0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F","G","H","J","K","L","M","N","P","Q","R","S","T","U","V","W","X","Y","Z")
license_num = ""
 
time_begin = time.time()
 
 
# 定义输入节点,对应于图片像素值矩阵集合和图片标签(即所代表的数字)
x = tf.placeholder(tf.float32, shape=[None, SIZE])
y_ = tf.placeholder(tf.float32, shape=[None, NUM_CLASSES])
 
x_image = tf.reshape(x, [-1, WIDTH, HEIGHT, 1])
 
 
# 定义卷积函数
def conv_layer(inputs, W, b, conv_strides, kernel_size, pool_strides, padding):
  L1_conv = tf.nn.conv2d(inputs, W, strides=conv_strides, padding=padding)
  L1_relu = tf.nn.relu(L1_conv + b)
  return tf.nn.max_pool(L1_relu, ksize=kernel_size, strides=pool_strides, padding='SAME')
 
# 定义全连接层函数
def full_connect(inputs, W, b):
  return tf.nn.relu(tf.matmul(inputs, W) + b)
 
 
if __name__ =='__main__' and sys.argv[1]=='train':
  # 第一次遍历图片目录是为了获取图片总数
  input_count = 0
  for i in range(0,NUM_CLASSES):
    dir = './train_images/training-set/%s/' % i      # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        input_count += 1
 
  # 定义对应维数和各维长度的数组
  input_images = np.array([[0]*SIZE for i in range(input_count)])
  input_labels = np.array([[0]*NUM_CLASSES for i in range(input_count)])
 
  # 第二次遍历图片目录是为了生成图片数据和标签
  index = 0
  for i in range(0,NUM_CLASSES):
    dir = './train_images/training-set/%s/' % i     # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        filename = dir + filename
        img = Image.open(filename)
        width = img.size[0]
        height = img.size[1]
        for h in range(0, height):
          for w in range(0, width):
            # 通过这样的处理,使数字的线条变细,有利于提高识别准确率
            if img.getpixel((w, h)) > 230:
              input_images[index][w+h*width] = 0
            else:
              input_images[index][w+h*width] = 1
        input_labels[index][i] = 1
        index += 1
 
  # 第一次遍历图片目录是为了获取图片总数
  val_count = 0
  for i in range(0,NUM_CLASSES):
    dir = './train_images/validation-set/%s/' % i      # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        val_count += 1
 
  # 定义对应维数和各维长度的数组
  val_images = np.array([[0]*SIZE for i in range(val_count)])
  val_labels = np.array([[0]*NUM_CLASSES for i in range(val_count)])
 
  # 第二次遍历图片目录是为了生成图片数据和标签
  index = 0
  for i in range(0,NUM_CLASSES):
    dir = './train_images/validation-set/%s/' % i     # 这里可以改成你自己的图片目录,i为分类标签
    for rt, dirs, files in os.walk(dir):
      for filename in files:
        filename = dir + filename
        img = Image.open(filename)
        width = img.size[0]
        height = img.size[1]
        for h in range(0, height):
          for w in range(0, width):
            # 通过这样的处理,使数字的线条变细,有利于提高识别准确率
            if img.getpixel((w, h)) > 230:
              val_images[index][w+h*width] = 0
            else:
              val_images[index][w+h*width] = 1
        val_labels[index][i] = 1
        index += 1
  
  with tf.Session() as sess:
    # 第一个卷积层
    W_conv1 = tf.Variable(tf.truncated_normal([8, 8, 1, 16], stddev=0.1), name="W_conv1")
    b_conv1 = tf.Variable(tf.constant(0.1, shape=[16]), name="b_conv1")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 2, 2, 1]
    pool_strides = [1, 2, 2, 1]
    L1_pool = conv_layer(x_image, W_conv1, b_conv1, conv_strides, kernel_size, pool_strides, padding='SAME')
 
    # 第二个卷积层
    W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 16, 32], stddev=0.1), name="W_conv2")
    b_conv2 = tf.Variable(tf.constant(0.1, shape=[32]), name="b_conv2")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 1, 1, 1]
    pool_strides = [1, 1, 1, 1]
    L2_pool = conv_layer(L1_pool, W_conv2, b_conv2, conv_strides, kernel_size, pool_strides, padding='SAME')
 
 
    # 全连接层
    W_fc1 = tf.Variable(tf.truncated_normal([16 * 20 * 32, 512], stddev=0.1), name="W_fc1")
    b_fc1 = tf.Variable(tf.constant(0.1, shape=[512]), name="b_fc1")
    h_pool2_flat = tf.reshape(L2_pool, [-1, 16 * 20*32])
    h_fc1 = full_connect(h_pool2_flat, W_fc1, b_fc1)
 
 
    # dropout
    keep_prob = tf.placeholder(tf.float32)
 
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
 
 
    # readout层
    W_fc2 = tf.Variable(tf.truncated_normal([512, NUM_CLASSES], stddev=0.1), name="W_fc2")
    b_fc2 = tf.Variable(tf.constant(0.1, shape=[NUM_CLASSES]), name="b_fc2")
 
    # 定义优化器和训练op
    y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
    cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
    train_step = tf.train.AdamOptimizer((1e-4)).minimize(cross_entropy)
 
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
 
    sess.run(tf.global_variables_initializer())
 
    time_elapsed = time.time() - time_begin
    print("读取图片文件耗费时间:%d秒" % time_elapsed)
    time_begin = time.time()
 
    print ("一共读取了 %s 个训练图像, %s 个标签" % (input_count, input_count))
 
    # 设置每次训练op的输入个数和迭代次数,这里为了支持任意图片总数,定义了一个余数remainder,譬如,如果每次训练op的输入个数为60,图片总数为150张,则前面两次各输入60张,最后一次输入30张(余数30)
    batch_size = 60
    iterations = iterations
    batches_count = int(input_count / batch_size)
    remainder = input_count % batch_size
    print ("训练数据集分成 %s 批, 前面每批 %s 个数据,最后一批 %s 个数据" % (batches_count+1, batch_size, remainder))
 
    # 执行训练迭代
    for it in range(iterations):
      # 这里的关键是要把输入数组转为np.array
      for n in range(batches_count):
        train_step.run(feed_dict={x: input_images[n*batch_size:(n+1)*batch_size], y_: input_labels[n*batch_size:(n+1)*batch_size], keep_prob: 0.5})
      if remainder > 0:
        start_index = batches_count * batch_size;
        train_step.run(feed_dict={x: input_images[start_index:input_count-1], y_: input_labels[start_index:input_count-1], keep_prob: 0.5})
 
      # 每完成五次迭代,判断准确度是否已达到100%,达到则退出迭代循环
      iterate_accuracy = 0
      if it%5 == 0:
        iterate_accuracy = accuracy.eval(feed_dict={x: val_images, y_: val_labels, keep_prob: 1.0})
        print ('第 %d 次训练迭代: 准确率 %0.5f%%' % (it, iterate_accuracy*100))
        if iterate_accuracy >= 0.9999 and it >= iterations:
          break;
 
    print ('完成训练!')
    time_elapsed = time.time() - time_begin
    print ("训练耗费时间:%d秒" % time_elapsed)
    time_begin = time.time()
 
    # 保存训练结果
    if not os.path.exists(SAVER_DIR):
      print ('不存在训练数据保存目录,现在创建保存目录')
      os.makedirs(SAVER_DIR)
    # 初始化saver
    saver = tf.train.Saver()      
    saver_path = saver.save(sess, "%smodel.ckpt"%(SAVER_DIR))
 
 
 
if __name__ =='__main__' and sys.argv[1]=='predict':
  saver = tf.train.import_meta_graph("%smodel.ckpt.meta"%(SAVER_DIR))
  with tf.Session() as sess:
    model_file=tf.train.latest_checkpoint(SAVER_DIR)
    saver.restore(sess, model_file)
 
    # 第一个卷积层
    W_conv1 = sess.graph.get_tensor_by_name("W_conv1:0")
    b_conv1 = sess.graph.get_tensor_by_name("b_conv1:0")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 2, 2, 1]
    pool_strides = [1, 2, 2, 1]
    L1_pool = conv_layer(x_image, W_conv1, b_conv1, conv_strides, kernel_size, pool_strides, padding='SAME')
 
    # 第二个卷积层
    W_conv2 = sess.graph.get_tensor_by_name("W_conv2:0")
    b_conv2 = sess.graph.get_tensor_by_name("b_conv2:0")
    conv_strides = [1, 1, 1, 1]
    kernel_size = [1, 1, 1, 1]
    pool_strides = [1, 1, 1, 1]
    L2_pool = conv_layer(L1_pool, W_conv2, b_conv2, conv_strides, kernel_size, pool_strides, padding='SAME')
 
 
    # 全连接层
    W_fc1 = sess.graph.get_tensor_by_name("W_fc1:0")
    b_fc1 = sess.graph.get_tensor_by_name("b_fc1:0")
    h_pool2_flat = tf.reshape(L2_pool, [-1, 16 * 20*32])
    h_fc1 = full_connect(h_pool2_flat, W_fc1, b_fc1)
 
 
    # dropout
    keep_prob = tf.placeholder(tf.float32)
 
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
 
 
    # readout层
    W_fc2 = sess.graph.get_tensor_by_name("W_fc2:0")
    b_fc2 = sess.graph.get_tensor_by_name("b_fc2:0")
 
    # 定义优化器和训练op
    conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
 
    for n in range(3,8):
      path = "test_images/%s.bmp" % (n)
      img = Image.open(path)
      width = img.size[0]
      height = img.size[1]
 
      img_data = [[0]*SIZE for i in range(1)]
      for h in range(0, height):
        for w in range(0, width):
          if img.getpixel((w, h)) < 190:
            img_data[0][w+h*width] = 1
          else:
            img_data[0][w+h*width] = 0
      
      result = sess.run(conv, feed_dict = {x: np.array(img_data), keep_prob: 1.0})
      
      max1 = 0
      max2 = 0
      max3 = 0
      max1_index = 0
      max2_index = 0
      max3_index = 0
      for j in range(NUM_CLASSES):
        if result[0][j] > max1:
          max1 = result[0][j]
          max1_index = j
          continue
        if (result[0][j]>max2) and (result[0][j]<=max1):
          max2 = result[0][j]
          max2_index = j
          continue
        if (result[0][j]>max3) and (result[0][j]<=max2):
          max3 = result[0][j]
          max3_index = j
          continue
      
      license_num = license_num + LETTERS_DIGITS[max1_index]
      print ("概率: [%s %0.2f%%]  [%s %0.2f%%]  [%s %0.2f%%]" % (LETTERS_DIGITS[max1_index],max1*100, LETTERS_DIGITS[max2_index],max2*100, LETTERS_DIGITS[max3_index],max3*100))
      
    print ("车牌编号是: 【%s】" % license_num)

保存好上面三个python脚本后,我们首先进行省份简称训练。在运行代码之前,需要先把数据集解压到训练脚本所在目录。然后,在命令行中进入脚本所在目录,输入执行如下命令:

python train-license-province.py train

训练结果如下:

TensorFlow车牌识别完整版代码(含车牌数据集)

然后进行省份简称识别,在命令行输入执行如下命令:

python train-license-province.py predict

TensorFlow车牌识别完整版代码(含车牌数据集)

执行城市代号训练(相当于训练26个字母):

python train-license-letters.py train

TensorFlow车牌识别完整版代码(含车牌数据集)

识别城市代号:

python train-license-letters.py predict

TensorFlow车牌识别完整版代码(含车牌数据集)

执行车牌编号训练(相当于训练24个字母+10个数字,我国交通法规规定车牌编号中不包含字母I和O):

python train-license-digits.py train

TensorFlow车牌识别完整版代码(含车牌数据集)

识别车牌编号:

python train-license-digits.py predict

TensorFlow车牌识别完整版代码(含车牌数据集)

可以看到,在测试图片上,识别准确率很高。识别结果是闽O-1672Q。

下图是测试图片的车牌原图:

TensorFlow车牌识别完整版代码(含车牌数据集)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python开发编码规范
Sep 08 Python
python多线程扫描端口示例
Jan 16 Python
详解python上传文件和字符到PHP服务器
Nov 24 Python
python调用百度REST API实现语音识别
Aug 30 Python
Python设计模式之策略模式实例详解
Jan 21 Python
Python自动化之数据驱动让你的脚本简洁10倍【推荐】
Jun 04 Python
PyQt5组件读取参数的实例
Jun 25 Python
对python中url参数编码与解码的实例详解
Jul 25 Python
python 有效的括号的实现代码示例
Nov 11 Python
基于打开pycharm有带图片md文件卡死问题的解决
Apr 24 Python
Pandas对DataFrame单列/多列进行运算(map, apply, transform, agg)
Jun 14 Python
Pytorch反向传播中的细节-计算梯度时的默认累加操作
Jun 05 Python
TensorFlow基于MNIST数据集实现车牌识别(初步演示版)
Aug 05 #Python
Django应用程序入口WSGIHandler源码解析
Aug 05 #Python
详解如何用TensorFlow训练和识别/分类自定义图片
Aug 05 #Python
详解如何从TensorFlow的mnist数据集导出手写体数字图片
Aug 05 #Python
Python获取时间范围内日期列表和周列表的函数
Aug 05 #Python
Django ORM 查询管理器源码解析
Aug 05 #Python
python实现车牌识别的示例代码
Aug 05 #Python
You might like
php arsort 数组降序排序详细介绍
2016/11/17 PHP
Yii输入正确验证码却验证失败的解决方法
2017/06/06 PHP
easyui Droppable组件实现放置特效
2015/08/19 Javascript
Highcharts学习之数据列
2016/08/03 Javascript
深入浅出ES6之let和const命令
2016/08/25 Javascript
Bootstrap字体图标无法正常显示的解决方法
2016/10/08 Javascript
Javascript Function.prototype.bind详细分析
2016/12/29 Javascript
基于JavaScript实现焦点图轮播效果
2017/03/27 Javascript
vue微信分享 vue实现当前页面分享其他页面
2017/12/02 Javascript
微信小程序实现收藏与取消收藏切换图片功能
2018/08/03 Javascript
node版本管理工具n包使用教程详解
2018/11/09 Javascript
React 实现拖拽功能的示例代码
2019/01/06 Javascript
详解VS Code使用之Vue工程配置format代码格式化
2019/03/20 Javascript
vue 详情跳转至列表页实现列表页缓存
2019/03/27 Javascript
基于Vue+ElementUI的省市区地址选择通用组件
2019/11/20 Javascript
[49:42]DOTA2上海特级锦标赛主赛事日 - 3 胜者组第二轮#2Secret VS EG第一局
2016/03/04 DOTA
python获取android设备的GPS信息脚本分享
2015/03/06 Python
Python中用于去除空格的三个函数的使用小结
2015/04/07 Python
Python 数据结构之旋转链表
2017/02/25 Python
python paramiko模块学习分享
2017/08/23 Python
如何用python整理附件
2018/05/13 Python
python实现写数字文件名的递增保存文件方法
2018/10/25 Python
浅谈django rest jwt vue 跨域问题
2018/10/26 Python
Python数据类型之Dict字典实例详解
2019/05/07 Python
Django集成celery发送异步邮件实例
2019/12/17 Python
Django+python服务器部署与环境部署教程详解
2020/03/30 Python
python--shutil移动文件到另一个路径的操作
2020/07/13 Python
Python生成并下载文件后端代码实例
2020/08/31 Python
如何基于Django实现上下文章跳转
2020/09/16 Python
用python计算文件的MD5值
2020/12/23 Python
浅谈pc和移动端的响应式的使用
2019/01/03 HTML / CSS
项目工作说明书
2014/07/29 职场文书
2015年体育部工作总结
2015/04/02 职场文书
通知书大全
2015/04/27 职场文书
退休欢送会致辞
2015/07/31 职场文书
励志语录:你若不勇敢,谁替你坚强
2019/11/08 职场文书