python dataframe向下向上填充,fillna和ffill的方法


Posted in Python onNovember 28, 2018

首先新建一个dataframe:

In[8]: df = pd.DataFrame({'name':list('ABCDA'),'house':[1,1,2,3,3],'date':['2010-01-01','2010-06-09','2011-12-03','2011-04-05','2012-03-23']})
In[9]: df
Out[9]: 
   date house name
0 2010-01-01  1 A
1 2010-06-09  1 B
2 2011-12-03  2 C
3 2011-04-05  3 D
4 2012-03-23  3 A

将date列改为时间类型:

In[12]: df.date = pd.to_datetime(df.date)

数据的含义是这样的,我们有ABCD四个人的数据,已知A在2010-01-01的时候,名下有1套房,B在2010-06-09的时候,名下有1套房,C在2011-12-03的时候,有2套房,D在2011-04-05的时候有3套房,A在2012-02-23的时候,数据更新了,有两套房。

要求在有姓名和时间的情况下,能给出其名下有几套房:

比如A在2010-01-01与2012-03-23期间任意一天,都应该是1套房,在2012-03-23之后,都是3套房。

我们使用pandas的fillna方法,选择ffill。

首先我们获得一个2010-01-01到2017-12-01的dataframe

In[14]: time_range = pd.DataFrame(
 pd.date_range('2010-01-01','2017-12-01',freq='D'), columns=['date']).set_index("date")
In[15]: time_range
Out[15]: 
Empty DataFrame
Columns: []
Index: [2010-01-01 00:00:00, 2010-01-02 00:00:00, 2010-01-03 00:00:00, 2010-01-04 00:00:00, 2010-01-05 00:00:00, 2010-01-06 00:00:00, 2010-01-07 00:00:00, 2010-01-08 00:00:00, 2010-01-09 00:00:00, 2010-01-10 00:00:00, 2010-01-11 00:00:00, 2010-01-12 00:00:00, 2010-01-13 00:00:00, 2010-01-14 00:00:00, 2010-01-15 00:00:00, 2010-01-16 00:00:00, 2010-01-17 00:00:00, 2010-01-18 00:00:00, 2010-01-19 00:00:00, 2010-01-20 00:00:00, 2010-01-21 00:00:00, 2010-01-22 00:00:00, 2010-01-23 00:00:00, 2010-01-24 00:00:00, 2010-01-25 00:00:00, 2010-01-26 00:00:00, 2010-01-27 00:00:00, 2010-01-28 00:00:00, 2010-01-29 00:00:00, 2010-01-30 00:00:00, 2010-01-31 00:00:00, 2010-02-01 00:00:00, 2010-02-02 00:00:00, 2010-02-03 00:00:00, 2010-02-04 00:00:00, 2010-02-05 00:00:00, 2010-02-06 00:00:00, 2010-02-07 00:00:00, 2010-02-08 00:00:00, 2010-02-09 00:00:00, 2010-02-10 00:00:00, 2010-02-11 00:00:00, 2010-02-12 00:00:00, 2010-02-13 00:00:00, 2010-02-14 00:00:00, 2010-02-15 00:00:00, 2010-02-16 00:00:00, 2010-02-17 00:00:00, 2010-02-18 00:00:00, 2010-02-19 00:00:00, 2010-02-20 00:00:00, 2010-02-21 00:00:00, 2010-02-22 00:00:00, 2010-02-23 00:00:00, 2010-02-24 00:00:00, 2010-02-25 00:00:00, 2010-02-26 00:00:00, 2010-02-27 00:00:00, 2010-02-28 00:00:00, 2010-03-01 00:00:00, 2010-03-02 00:00:00, 2010-03-03 00:00:00, 2010-03-04 00:00:00, 2010-03-05 00:00:00, 2010-03-06 00:00:00, 2010-03-07 00:00:00, 2010-03-08 00:00:00, 2010-03-09 00:00:00, 2010-03-10 00:00:00, 2010-03-11 00:00:00, 2010-03-12 00:00:00, 2010-03-13 00:00:00, 2010-03-14 00:00:00, 2010-03-15 00:00:00, 2010-03-16 00:00:00, 2010-03-17 00:00:00, 2010-03-18 00:00:00, 2010-03-19 00:00:00, 2010-03-20 00:00:00, 2010-03-21 00:00:00, 2010-03-22 00:00:00, 2010-03-23 00:00:00, 2010-03-24 00:00:00, 2010-03-25 00:00:00, 2010-03-26 00:00:00, 2010-03-27 00:00:00, 2010-03-28 00:00:00, 2010-03-29 00:00:00, 2010-03-30 00:00:00, 2010-03-31 00:00:00, 2010-04-01 00:00:00, 2010-04-02 00:00:00, 2010-04-03 00:00:00, 2010-04-04 00:00:00, 2010-04-05 00:00:00, 2010-04-06 00:00:00, 2010-04-07 00:00:00, 2010-04-08 00:00:00, 2010-04-09 00:00:00, 2010-04-10 00:00:00, ...]
 
[2892 rows x 0 columns]

然后用上上篇博客中提到的pivot_table将原本的df转变之后,与time_range进行merger操作。

In[16]: df = pd.pivot_table(df, columns='name', index='date')
 
In[17]: df
Out[17]: 
   house    
name   A B C D
date       
2010-01-01 1.0 NaN NaN NaN
2010-06-09 NaN 1.0 NaN NaN
2011-04-05 NaN NaN NaN 3.0
2011-12-03 NaN NaN 2.0 NaN
2012-03-23 3.0 NaN NaN NaN
In[18]: df = df.merge(time_range,how="right", left_index=True, right_index=True)

然后再进行向下填充操作:

In[20]: df = df.fillna(method='ffill')

最后:

df = df.stack().reset_index()

结果太长,这里就不粘贴了。如果想向上填充,可选择method = 'bfill‘

以上这篇python dataframe向下向上填充,fillna和ffill的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Django实现图片文字同时提交的方法
May 26 Python
Pycharm学习教程(5) Python快捷键相关设置
May 03 Python
Python使用pip安装pySerial串口通讯模块
Apr 20 Python
Python之批量创建文件的实例讲解
May 10 Python
Python3的高阶函数map,reduce,filter的示例详解
Jul 23 Python
python实现画循环圆
Nov 23 Python
keras的ImageDataGenerator和flow()的用法说明
Jul 03 Python
详解Python中的路径问题
Sep 02 Python
浅谈python 类方法/静态方法
Sep 18 Python
Python jieba库分词模式实例用法
Jan 13 Python
pip install命令安装扩展库整理
Mar 02 Python
如何用python绘制雷达图
Apr 24 Python
在python中只选取列表中某一纵列的方法
Nov 28 #Python
手把手教你如何安装Pycharm(详细图文教程)
Nov 28 #Python
python 使用re.search()筛选后 选取部分结果的方法
Nov 28 #Python
Python读取excel指定列生成指定sql脚本的方法
Nov 28 #Python
Python从Excel中读取日期一列的方法
Nov 28 #Python
pandas使用apply多列生成一列数据的实例
Nov 28 #Python
pandas通过loc生成新的列方法
Nov 28 #Python
You might like
PHP注释实例技巧
2008/10/03 PHP
php读取csv实现csv文件下载功能
2013/12/18 PHP
php提交表单发送邮件的方法
2015/03/20 PHP
php函数重载的替代方法--伪重载详解
2015/05/08 PHP
crontab无法执行php的解决方法
2016/01/25 PHP
php实现当前页面点击下载文件的简单方法
2016/09/22 PHP
PHP读取、解析eml文件及生成网页的方法示例
2017/09/04 PHP
Laravel模型事件的实现原理详解
2018/03/14 PHP
父子窗体间传递JSON格式的数据的代码
2010/12/25 Javascript
Javascript实现简单的富文本编辑器附演示
2014/06/16 Javascript
JS+CSS实现简易的滑动门效果代码
2015/09/24 Javascript
JavaScript实现的CRC32函数示例
2016/11/23 Javascript
浅谈nodejs中的类定义和继承的套路
2017/07/26 NodeJs
Express之托管静态文件的方法
2018/06/01 Javascript
JavaScript ES6箭头函数使用指南
2018/12/30 Javascript
JavaScript递归函数定义与用法实例分析
2019/01/24 Javascript
vue-cli配置全局sass、less变量的方法
2019/06/06 Javascript
基于ajax实现上传图片代码示例解析
2020/12/03 Javascript
Python Web框架Flask信号机制(signals)介绍
2015/01/01 Python
python 调用HBase的简单实例
2016/12/18 Python
python去掉行尾的换行符方法
2017/01/04 Python
python批量解压zip文件的方法
2019/08/20 Python
基于python求两个列表的并集.交集.差集
2020/02/10 Python
PyCharm 在Windows的有用快捷键详解
2020/04/07 Python
用python-webdriver实现自动填表的示例代码
2021/01/13 Python
Waterford美国官网:爱尔兰水晶制品品牌
2017/04/26 全球购物
Expedia瑞典官网:预订度假屋、酒店、汽车租赁、机票等
2021/01/23 全球购物
北大青鸟学生求职信
2013/09/24 职场文书
四年大学生活的自我评价范文
2014/02/07 职场文书
12.4法制宣传日活动总结
2014/08/26 职场文书
少先队活动总结
2014/08/29 职场文书
党支部组织生活会整改方案
2014/09/30 职场文书
大学学习委员竞选稿
2015/11/20 职场文书
预备党员入党思想汇报(范文)
2019/08/14 职场文书
高端收音机+蓝牙音箱,JBL TUNER FM带收音蓝牙音箱评测
2021/04/24 无线电
Python带你从浅入深探究Tuple(基础篇)
2021/05/15 Python