python实现泊松图像融合


Posted in Python onJuly 26, 2018

本文实例为大家分享了python实现泊松图像融合的具体代码,供大家参考,具体内容如下

```
from __future__ import division
import numpy as np 
import scipy.fftpack
import scipy.ndimage
import cv2
import matplotlib.pyplot as plt 
#sns.set(style="darkgrid")


def DST(x):
  """
  Converts Scipy's DST output to Matlab's DST (scaling).
  """
  X = scipy.fftpack.dst(x,type=1,axis=0)
  return X/2.0

def IDST(X):
  """
  Inverse DST. Python -> Matlab
  """
  n = X.shape[0]
  x = np.real(scipy.fftpack.idst(X,type=1,axis=0))
  return x/(n+1.0)

def get_grads(im):
  """
  return the x and y gradients.
  """
  [H,W] = im.shape
  Dx,Dy = np.zeros((H,W),'float32'), np.zeros((H,W),'float32')
  j,k = np.atleast_2d(np.arange(0,H-1)).T, np.arange(0,W-1)
  Dx[j,k] = im[j,k+1] - im[j,k]
  Dy[j,k] = im[j+1,k] - im[j,k]
  return Dx,Dy

def get_laplacian(Dx,Dy):
  """
  return the laplacian
  """
  [H,W] = Dx.shape
  Dxx, Dyy = np.zeros((H,W)), np.zeros((H,W))
  j,k = np.atleast_2d(np.arange(0,H-1)).T, np.arange(0,W-1)
  Dxx[j,k+1] = Dx[j,k+1] - Dx[j,k] 
  Dyy[j+1,k] = Dy[j+1,k] - Dy[j,k]
  return Dxx+Dyy

def poisson_solve(gx,gy,bnd):
  # convert to double:
  gx = gx.astype('float32')
  gy = gy.astype('float32')
  bnd = bnd.astype('float32')

  H,W = bnd.shape
  L = get_laplacian(gx,gy)

  # set the interior of the boundary-image to 0:
  bnd[1:-1,1:-1] = 0
  # get the boundary laplacian:
  L_bp = np.zeros_like(L)
  L_bp[1:-1,1:-1] = -4*bnd[1:-1,1:-1] \
           + bnd[1:-1,2:] + bnd[1:-1,0:-2] \
           + bnd[2:,1:-1] + bnd[0:-2,1:-1] # delta-x
  L = L - L_bp
  L = L[1:-1,1:-1]

  # compute the 2D DST:
  L_dst = DST(DST(L).T).T #first along columns, then along rows

  # normalize:
  [xx,yy] = np.meshgrid(np.arange(1,W-1),np.arange(1,H-1))
  D = (2*np.cos(np.pi*xx/(W-1))-2) + (2*np.cos(np.pi*yy/(H-1))-2)
  L_dst = L_dst/D

  img_interior = IDST(IDST(L_dst).T).T # inverse DST for rows and columns

  img = bnd.copy()

  img[1:-1,1:-1] = img_interior

  return img

def blit_images(im_top,im_back,scale_grad=1.0,mode='max'):
  """
  combine images using poission editing.
  IM_TOP and IM_BACK should be of the same size.
  """
  assert np.all(im_top.shape==im_back.shape)

  im_top = im_top.copy().astype('float32')
  im_back = im_back.copy().astype('float32')
  im_res = np.zeros_like(im_top)

  # frac of gradients which come from source:
  for ch in xrange(im_top.shape[2]):
    ims = im_top[:,:,ch]
    imd = im_back[:,:,ch]

    [gxs,gys] = get_grads(ims)
    [gxd,gyd] = get_grads(imd)

    gxs *= scale_grad
    gys *= scale_grad

    gxs_idx = gxs!=0
    gys_idx = gys!=0
    # mix the source and target gradients:
    if mode=='max':
      gx = gxs.copy()
      gxm = (np.abs(gxd))>np.abs(gxs)
      gx[gxm] = gxd[gxm]

      gy = gys.copy()
      gym = np.abs(gyd)>np.abs(gys)
      gy[gym] = gyd[gym]

      # get gradient mixture statistics:
      f_gx = np.sum((gx[gxs_idx]==gxs[gxs_idx]).flat) / (np.sum(gxs_idx.flat)+1e-6)
      f_gy = np.sum((gy[gys_idx]==gys[gys_idx]).flat) / (np.sum(gys_idx.flat)+1e-6)
      if min(f_gx, f_gy) <= 0.35:
        m = 'max'
        if scale_grad > 1:
          m = 'blend'
        return blit_images(im_top, im_back, scale_grad=1.5, mode=m)

    elif mode=='src':
      gx,gy = gxd.copy(), gyd.copy()
      gx[gxs_idx] = gxs[gxs_idx]
      gy[gys_idx] = gys[gys_idx]

    elif mode=='blend': # from recursive call:
      # just do an alpha blend
      gx = gxs+gxd
      gy = gys+gyd

    im_res[:,:,ch] = np.clip(poisson_solve(gx,gy,imd),0,255)

  return im_res.astype('uint8')


def contiguous_regions(mask):
  """
  return a list of (ind0, ind1) such that mask[ind0:ind1].all() is
  True and we cover all such regions
  """
  in_region = None
  boundaries = []
  for i, val in enumerate(mask):
    if in_region is None and val:
      in_region = i
    elif in_region is not None and not val:
      boundaries.append((in_region, i))
      in_region = None

  if in_region is not None:
    boundaries.append((in_region, i+1))
  return boundaries


if __name__=='__main__':
  """
  example usage:
  """
  import seaborn as sns

  im_src = cv2.imread('../f01006.jpg').astype('float32')

  im_dst = cv2.imread('../f01006-5.jpg').astype('float32')

  mu = np.mean(np.reshape(im_src,[im_src.shape[0]*im_src.shape[1],3]),axis=0)
  # print mu
  sz = (1920,1080)
  im_src = cv2.resize(im_src,sz)
  im_dst = cv2.resize(im_dst,sz)

  im0 = im_dst[:,:,0] > 100
  im_dst[im0,:] = im_src[im0,:]
  im_dst[~im0,:] = 50
  im_dst = cv2.GaussianBlur(im_dst,(5,5),5)

  im_alpha = 0.8*im_dst + 0.2*im_src

  # plt.imshow(im_dst)
  # plt.show()

  im_res = blit_images(im_src,im_dst)

  import scipy
  scipy.misc.imsave('orig.png',im_src[:,:,::-1].astype('uint8'))
  scipy.misc.imsave('alpha.png',im_alpha[:,:,::-1].astype('uint8'))
  scipy.misc.imsave('poisson.png',im_res[:,:,::-1].astype('uint8'))

  im_actual_L = cv2.cvtColor(im_src.astype('uint8'),cv2.cv.CV_BGR2Lab)[:,:,0]
  im_alpha_L = cv2.cvtColor(im_alpha.astype('uint8'),cv2.cv.CV_BGR2Lab)[:,:,0]
  im_poisson_L = cv2.cvtColor(im_res.astype('uint8'),cv2.cv.CV_BGR2Lab)[:,:,0]

  # plt.imshow(im_alpha_L)
  # plt.show()
  for i in xrange(500,im_alpha_L.shape[1],5):
    l_actual = im_actual_L[i,:]#-im_actual_L[i,:-1]
    l_alpha = im_alpha_L[i,:]#-im_alpha_L[i,:-1]
    l_poisson = im_poisson_L[i,:]#-im_poisson_L[i,:-1]


    with sns.axes_style("darkgrid"):
      plt.subplot(2,1,2)
      #plt.plot(l_alpha,label='alpha')

      plt.plot(l_poisson,label='poisson')
      plt.hold(True)
      plt.plot(l_actual,label='actual')
      plt.legend()

      # find "text regions":
      is_txt = ~im0[i,:]
      t_loc = contiguous_regions(is_txt)
      ax = plt.gca()
      for b0,b1 in t_loc:
        ax.axvspan(b0, b1, facecolor='red', alpha=0.1)

    with sns.axes_style("white"):
      plt.subplot(2,1,1)
      plt.imshow(im_alpha[:,:,::-1].astype('uint8'))
      plt.hold(True)
      plt.plot([0,im_alpha_L.shape[0]-1],[i,i],'r')
      plt.axis('image')
      plt.show()


  plt.subplot(1,3,1)
  plt.imshow(im_src[:,:,::-1].astype('uint8'))
  plt.subplot(1,3,2)
  plt.imshow(im_alpha[:,:,::-1].astype('uint8'))
  plt.subplot(1,3,3)  
  plt.imshow(im_res[:,:,::-1]) #cv2 reads in BGR
  plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python基础之函数用法实例详解
Sep 10 Python
列举Python中吸引人的一些特性
Apr 09 Python
以911新闻为例演示Python实现数据可视化的教程
Apr 23 Python
python学习笔记之调用eval函数出现invalid syntax错误问题
Oct 18 Python
Python编程flask使用页面模版的方法
Dec 28 Python
Python关于excel和shp的使用在matplotlib
Jan 03 Python
Python 实现交换矩阵的行示例
Jun 26 Python
Django 大文件下载实现过程解析
Aug 01 Python
Python 从subprocess运行的子进程中实时获取输出的例子
Aug 14 Python
Python实现图像去噪方式(中值去噪和均值去噪)
Dec 18 Python
tensorflow 利用expand_dims和squeeze扩展和压缩tensor维度方式
Feb 07 Python
pycharm配置QtDesigner的超详细方法
Jan 25 Python
python中的decorator的作用详解
Jul 26 #Python
python opencv实现旋转矩形框裁减功能
Jul 25 #Python
Python3匿名函数用法示例
Jul 25 #Python
Python实现动态添加属性和方法操作示例
Jul 25 #Python
利用pandas读取中文数据集的方法
Jul 25 #Python
利用pandas进行大文件计数处理的方法
Jul 25 #Python
使用python验证代理ip是否可用的实现方法
Jul 25 #Python
You might like
PHP面向对象三大特点学习(充分理解抽象、封装、继承、多态)
2012/05/07 PHP
php使用curl抓取qq空间的访客信息示例
2014/02/28 PHP
php文件上传的两种实现方法
2016/04/04 PHP
浅谈mysql_query()函数的返回值问题
2016/09/05 PHP
Yii2.0框架模型添加/修改/删除数据操作示例
2019/07/18 PHP
jquery中输入验证中一个不错的效果
2010/08/21 Javascript
JavaScript中获取元素索引的函数
2010/09/10 Javascript
JQquery的一些使用心得分享
2012/08/01 Javascript
JavaScript异步编程Promise模式的6个特性
2014/04/03 Javascript
jQuery插件Validation快速完成表单验证的方式
2016/07/28 Javascript
jquery  实现轮播图详解及实例代码
2016/10/12 Javascript
pc加载更多功能和移动端下拉刷新加载数据
2016/11/07 Javascript
微信小程序实现拖拽 image 触摸事件监听的实例
2017/08/17 Javascript
AngularJS实现图片上传和预览功能的方法分析
2017/11/08 Javascript
vue vuex vue-rouert后台项目——权限路由(适合初学)
2017/12/29 Javascript
nodejs 日志模块winston的使用方法
2018/05/02 NodeJs
vue.js实现格式化时间并每秒更新显示功能示例
2018/07/07 Javascript
全面分析JavaScript 继承
2019/05/30 Javascript
[42:52]Optic vs Serenity 2018国际邀请赛淘汰赛BO3 第二场 8.22
2018/08/23 DOTA
Python中__init__.py文件的作用详解
2016/09/18 Python
Python 类的特殊成员解析
2018/06/20 Python
python使用pygame框架实现推箱子游戏
2018/11/20 Python
Python3.5常见内置方法参数用法实例详解
2019/04/29 Python
详解python实现交叉验证法与留出法
2019/07/11 Python
Python坐标线性插值应用实现
2019/11/13 Python
Keras Convolution1D与Convolution2D区别说明
2020/05/22 Python
The Hut德国站点:时装、家居用品、美容等
2016/09/23 全球购物
Omio美国:全欧洲低价大巴、火车和航班搜索和比价
2017/11/08 全球购物
应届生污水处理求职信
2013/11/06 职场文书
国贸专业个人求职信分享
2013/12/04 职场文书
施工员岗位职责
2014/03/16 职场文书
销售类求职信
2014/06/13 职场文书
2014年组织委员工作总结
2014/12/01 职场文书
高三化学教学反思
2016/02/22 职场文书
2019让人心动的商业计划书
2019/06/27 职场文书
Python实现将多张图片合成MP4视频并加入背景音乐
2022/04/28 Python