Python高级用法总结


Posted in Python onMay 26, 2018

列表推导(list comprehensions)

场景1:将一个三维列表中所有一维数据为a的元素合并,组成新的二维列表。

最简单的方法:新建列表,遍历原三维列表,判断一维数据是否为a,若为a,则将该元素append至新列表中。
缺点:代码太繁琐,对于Python而言,执行速度会变慢很多。

针对场景1,我们首先应该想到用列表解析式来解决处理,一行代码即可解决:

lista = [item for item in array if item[0] == 'a']

那么,何为列表解析式?

官方解释:列表解析式是Python内置的非常简单却强大的可以用来创建list的生成式。

强大具体如何体现?

可以看到,使用列表解析式的写法更加简短,除此之外,因为是Python内置的用法,底层使用C语言实现,相较于编写Python代码而言,运行速度更快。

场景2: 对于一个列表,既要遍历索引又要遍历元素。

这里可以使用Python内建函数enumerate,在循环中更好的获取获得索引。

array = ['I', 'love', 'Python']
for i, element in enumerate(array):
  array[i] = '%d: %s' % (i, seq[i])

可以使用列表推导式对其进行重构:

def getitem(index, element):
  return '%d: %s' % (index, element)

array = ['I', 'love', 'Python']
arrayIndex = [getitem(index, element) for index, element in enumerate(array)]

据说这种写法更加的Pythonic。

总结:如果要对现有的可迭代对象做一些处理,然后生成新的列表,使用列表推导式将是最便捷的方法。

迭代器和生成器

迭代器(Iterator)

这里的迭代可以指for循环,在Python中,对于像list,dict和文件等而言,都可以使用for循环,但是它们并不是迭代器,它们属于可迭代对象。

什么可迭代对象

最简单的解释:可以使用for...in...语句进行循环的对象,就是可迭代对象(Iterable),可以使用isinstance()方法进行判断。

from collections import Iterable 
type = isinstance('python', Iterable)
print type

什么是迭代器
迭代器指的是可以使用next()方法来回调的对象,可以对可迭代对象使用iter()方法,将其转换为迭代器。

temp = iter([1, 2, 3])
print type(temp)
print next(temp)

此时temp就是一个迭代器。所以说,迭代器基于两个方法:

  • next:返回下一个项目
  • iter 返回迭代器本身

可理解为可被next()函数调用并不断返回下一个值的对象就是迭代器,在定义一个装饰器时将需要同时定义这两个方法。

迭代器的优势

在构建迭代器时,不是将所有的元素一次性的加载,而是等调用next方法时返回元素,所以不需要考虑内存的问题。

迭代器应用场景

那么,具体在什么场景下可以使用迭代器呢?

  • 数列的数据规模巨大
  • 数列有规律,但是不能使用列表推导式描述。

生成器

生成器是一种高级迭代器,使得需要返回一系列元素的函数所需的代码更加的简单和高效(不像创建迭代器代码那般冗长)。

生成器函数

生成器函数基于yield指令,可以暂停一个函数并返回中间结果。当需要一个将返回一个序列或在循环中执行的函数时,就可以使用生成器,因为当这些元素被传递到另一个函数中进行后续处理时,一次返回一个元素可以有效的提升整体性能。
常见的应用场景是使用生成器的流数据缓冲区。

生成器表达式

生成式表达式是一种实现生成器的便捷方式,将列表推导式的中括号替换为圆括号。
和列表推导式的区别:列表生成式可以直接创建一个表,但是生成器表达式是一种边循环边计算,使得列表的元素可以在循环过程中一个个的推算出来,不需要创建完整的列表,从而节省了大量的空间。

g = (x * x for x in range(10))

总结:生成器是一种高级迭代器。生成器的优点是延迟计算,一次返回一个结果,这样非常适用于大数据量的计算。但是,使用生成器必须要注意的一点是:生成器只能遍历一次。

lambda表达式(匿名函数)

lambda表达式纯粹是为了编写简单函数而设计,起到了一个函数速写的作用,使得简单函数可以更加简洁的表示。

lambda和def的区别

lambda表达式可以省去定义函数的过程,让代码更加的简洁,适用于简单函数,编写处理更大业务的函数需要使用def定义。
lambda表达式常搭配map(), reduce(), filter()函数使用

  • map(): map函数接受两个参数,一个是函数,一个是序列,其中,函数可以接收一个或者多个参数。map将传入的函数依次作用于序列中的每个元素,将结果作为新的列表返回。
    #将一个列表中的数字转换为字符串 map(str, [1,2,3,4,5,6])

  • reduce():函数接收两个参数,一个是函数,另一个是序列,但是,函数必须接收两个参数reduce把结果继续和序列的下一个元素做累积计算,其效果就是reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)。

  • filter():该函数用于筛选,将传入的函数,依次作用于每个元素,然后根据函数的返回值是True还是False,决定是留下还是丢弃该元素。

装饰器

装饰器本质是一个Python函数,它可以让其它函数在没有任何代码变动的情况下增加额外功能。有了装饰器,我们可以抽离出大量和函数功能本身无关的雷同代码并继续重用。经常用于具有切面需求的场景:包括插入日志、性能测试、事务处理、缓存和权限校验等。

那么为什么要引入装饰器呢?

场景:计算一个函数的执行时间。

一种方法就是定义一个函数,用来专门计算函数的运行时间,然后运行时间计算完成之后再处理真正的业务代码,代码如下:

import time 

def get_time(func):
  startTime = time.time()
  func()
  endTime = time.time()
  processTime = (endTime - startTime) * 1000
  print "The function timing is %f ms" %processTime

def myfunc():
  print "start func"
  time.sleep(0.8)
  print "end func"

get_time(myfunc)
myfunc()

但是这段代码的逻辑破坏了原有的代码逻辑,就是对所有func函数的调用都需要使用get_time(func)来实现。
那么,有没有更好的展示方式呢?当然有,那就是装饰器。

编写简单装饰器

结合上述实例,编写装饰器:

def get_time(func):
  def wrapper():
    startTime = time.time()
    func()
    endTime = time.time()
    processTime = (endTime - startTime) * 1000
    print "The function timing is %f ms" %processTime
  return wrapper
  
print "myfunc is:", myfunc.__name__
myfunc = get_time(myfunc)
print "myfunc is: ", myfunc.__name__
myfunc()

这样,一个简单的完整的装饰器就实现了,可以看到,装饰器并没有影响函数的执行逻辑和调用。
在Python中,可以使用"@"语法糖来精简装饰器的代码,将上例更改为:

@ get_time
def myfunc():
  print "start func"
  time.sleep(0.8)
  print "end func"

print "myfunc is: ", myfunc.__name__
myfunc()

** 装饰器的调用顺序**
装饰器可以叠加使用,若多个装饰器同时装饰一个函数,那么装饰器的调用顺序和@语法糖的声明顺序相反,也就是:

@decorator1
@decorator2
def func():
  pass

等效于:

func = decorator1(decorator2(func()))

被装饰的函数带参数

上述实例中,myfunc()是没有参数的,那如果添加参数的话,装饰器该如何编写呢?

#被装饰的函数带参数
def get_time3(func):
  def wrapper(*args, **kwargs):
    startTime = time.time()
    func(*args, **kwargs)
    endTime = time.time()
    processTime = (endTime - startTime) * 1000
    print "The function timing is %f ms" %processTime
  return wrapper
@ get_time3
def myfunc2(a):
  print "start func"
  print a
  time.sleep(0.8)
  print "end func"

a = "test"
myfunc2(a)

带参数的装饰器

装饰器有很大的灵活性,它本身支持参数,例如在上述实例中,@get_time装饰器唯一的参数就是执行业务的函数,当然也可以在装饰器中添加参数,加以逻辑判断。

内置装饰器

Python中,常见的类装饰器包括:@staticmathod、@classmethod和@property

  • @staticmethod:类的静态方法,跟成员方法的区别是没有self参数,并且可以在类不进行实例化的情况下调用。
  • @classmethod:跟成员方法的区别是接收的第一个参数不是self,而是cls(当前类的具体类型)
  • @property:表示可以直接通过类实例直接访问的信息。

以上,是本次整理的Python高级用法,本文将持续更新。

Python 相关文章推荐
Python中zip()函数用法实例教程
Jul 31 Python
Python编程中装饰器的使用示例解析
Jun 20 Python
Win10系统下安装labelme及json文件批量转化方法
Jul 30 Python
Python的互斥锁与信号量详解
Sep 12 Python
Django中提示消息messages的设置方式
Nov 15 Python
解决django model修改添加字段报错的问题
Nov 18 Python
django处理select下拉表单实例(从model到前端到post到form)
Mar 13 Python
Python模拟登入的N种方式(建议收藏)
May 31 Python
keras 指定程序在某块卡上训练实例
Jun 22 Python
Python 实现一个简单的web服务器
Jan 03 Python
仅用几行Python代码就能复制她的U盘文件?
Jun 26 Python
浅谈Python中的正则表达式
Jun 28 Python
关于Python的一些学习总结
May 25 #Python
windows下python和pip安装教程
May 25 #Python
python2.7实现爬虫网页数据
May 25 #Python
python sys.argv[]用法实例详解
May 25 #Python
python切片及sys.argv[]用法详解
May 25 #Python
windows下python安装pip图文教程
May 25 #Python
python3.6使用pymysql连接Mysql数据库
May 25 #Python
You might like
星际争霸中的对战模式介绍
2020/03/04 星际争霸
终于听上了直流胆调频
2021/03/02 无线电
PHP对象递归引用造成内存泄漏分析
2014/08/28 PHP
朋友网关于QQ相关的PHP代码(研究QQ的绝佳资料)
2015/01/26 PHP
Laravel模板引擎Blade中section的一些标签的区别介绍
2015/02/10 PHP
PHP正则替换函数preg_replace()报错:Notice Use of undefined constant的解决方法分析
2017/02/04 PHP
cakephp2.X多表联合查询join及使用分页查询的方法
2017/02/23 PHP
Underscore.js 的模板功能介绍与应用
2012/12/24 Javascript
jQuery extend 的简单实例
2013/09/18 Javascript
jQuery/CSS3图片特效插件整理推荐
2014/12/07 Javascript
详谈javascript异步编程
2016/02/21 Javascript
AngularJS基础 ng-srcset 指令简单示例
2016/08/03 Javascript
js与jQuery实现获取table中的数据并拼成json字符串操作示例
2018/07/12 jQuery
解决element-ui中下拉菜单子选项click事件不触发的问题
2018/08/22 Javascript
js正则取值的结果数组调试方法
2018/10/10 Javascript
移动端滑动切换组件封装 vue-swiper-router实例详解
2018/11/25 Javascript
vue实现的树形结构加多选框示例
2019/02/02 Javascript
vue请求本地自己编写的json文件的方法
2019/04/25 Javascript
vue-cli 3 全局过滤器的实例代码详解
2019/06/03 Javascript
Vue 实现输入框新增搜索历史记录功能
2019/10/15 Javascript
js实现AI五子棋人机大战
2020/05/28 Javascript
详解Python多线程
2016/11/14 Python
django js实现部分页面刷新的示例代码
2018/05/28 Python
Scrapy基于selenium结合爬取淘宝的实例讲解
2018/06/13 Python
在IPython中进行Python程序执行时间的测量方法
2018/11/01 Python
简单了解python代码优化小技巧
2019/07/08 Python
python使用paramiko模块通过ssh2协议对交换机进行配置的方法
2019/07/25 Python
Pycharm最新激活码2019(推荐)
2019/12/31 Python
python 已知三条边求三角形的角度案例
2020/04/12 Python
PHP高级工程师面试问题推荐
2013/01/18 面试题
什么是静态路由,其特点是什么?什么是动态路由,其特点是什么?
2013/07/26 面试题
什么是反射
2012/03/17 面试题
伊索寓言教学反思
2014/05/01 职场文书
教师先进工作者事迹材料
2014/05/01 职场文书
驻村工作先进事迹
2014/08/14 职场文书
2016年党员承诺书范文
2016/03/24 职场文书