利用Django框架中select_related和prefetch_related函数对数据库查询优化


Posted in Python onApril 01, 2015

实例的背景说明

假定一个个人信息系统,需要记录系统中各个人的故乡、居住地、以及到过的城市。数据库设计如下:

利用Django框架中select_related和prefetch_related函数对数据库查询优化

Models.py 内容如下:
 

from django.db import models
 
class Province(models.Model):
 name = models.CharField(max_length=10)
 def __unicode__(self):
  return self.name
 
class City(models.Model):
 name = models.CharField(max_length=5)
 province = models.ForeignKey(Province)
 def __unicode__(self):
  return self.name
 
class Person(models.Model):
 firstname = models.CharField(max_length=10)
 lastname = models.CharField(max_length=10)
 visitation = models.ManyToManyField(City, related_name = "visitor")
 hometown = models.ForeignKey(City, related_name = "birth")
 living  = models.ForeignKey(City, related_name = "citizen")
 def __unicode__(self):
  return self.firstname + self.lastname

注1:创建的app名为“QSOptimize”

注2:为了简化起见,`qsoptimize_province` 表中只有2条数据:湖北省和广东省,`qsoptimize_city`表中只有三条数据:武汉市、十堰市和广州市

如果我们想要获得所有家乡是湖北的人,最无脑的做法是先获得湖北省,再获得湖北的所有城市,最后获得故乡是这个城市的人。就像这样:
 

>>> hb = Province.objects.get(name__iexact=u"湖北省")
>>> people = []
>>> for city in hb.city_set.all():
... people.extend(city.birth.all())
...

显然这不是一个明智的选择,因为这样做会导致1+(湖北省城市数)次SQL查询。反正是个反例,导致的查询和获得掉结果就不列出来了。
prefetch_related() 或许是一个好的解决方法,让我们来看看。
 

>>> hb = Province.objects.prefetch_related("city_set__birth").objects.get(name__iexact=u"湖北省")
>>> people = []
>>> for city in hb.city_set.all():
... people.extend(city.birth.all())
...

因为是一个深度为2的prefetch,所以会导致3次SQL查询:
 

SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`name` LIKE '湖北省' ;
 
SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
FROM `QSOptimize_city`
WHERE `QSOptimize_city`.`province_id` IN (1);
 
SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`,
`QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`
FROM `QSOptimize_person`
WHERE `QSOptimize_person`.`hometown_id` IN (1, 3);

嗯…看上去不错,但是3次查询么?倒过来查询可能会更简单?
 

>>> people = list(Person.objects.select_related("hometown__province").filter(hometown__province__name__iexact=u"湖北省"))
 
SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`,
`QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`, `QSOptimize_city`.`id`,
`QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`, `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_person`
INNER JOIN `QSOptimize_city` ON (`QSOptimize_person`.`hometown_id` = `QSOptimize_city`.`id`)
INNER JOIN `QSOptimize_province` ON (`QSOptimize_city`.`province_id` = `QSOptimize_province`.`id`)
WHERE `QSOptimize_province`.`name` LIKE '湖北省';
 
+----+-----------+----------+-------------+-----------+----+--------+-------------+----+--------+
| id | firstname | lastname | hometown_id | living_id | id | name | province_id | id | name |
+----+-----------+----------+-------------+-----------+----+--------+-------------+----+--------+
| 1 | 张  | 三  |   3 |   1 | 3 | 十堰市 |   1 | 1 | 湖北省 |
| 2 | 李  | 四  |   1 |   3 | 1 | 武汉市 |   1 | 1 | 湖北省 |
| 3 | 王  | 麻子  |   3 |   2 | 3 | 十堰市 |   1 | 1 | 湖北省 |
+----+-----------+----------+-------------+-----------+----+--------+-------------+----+--------+
3 rows in set (0.00 sec)

完全没问题。不仅SQL查询的数量减少了,python程序上也精简了。
select_related()的效率要高于prefetch_related()。因此,最好在能用select_related()的地方尽量使用它,也就是说,对于ForeignKey字段,避免使用prefetch_related()。
联用
对于同一个QuerySet,你可以同时使用这两个函数。
在我们一直使用的例子上加一个model:Order (订单)
 

class Order(models.Model):
 customer = models.ForeignKey(Person)
 orderinfo = models.CharField(max_length=50)
 time  = models.DateTimeField(auto_now_add = True)
 def __unicode__(self):
  return self.orderinfo

如果我们拿到了一个订单的id 我们要知道这个订单的客户去过的省份。因为有ManyToManyField显然必须要用prefetch_related()。如果只用prefetch_related()会怎样呢?
 

>>> plist = Order.objects.prefetch_related('customer__visitation__province').get(id=1)
>>> for city in plist.customer.visitation.all():
... print city.province.name
...

显然,关系到了4个表:Order、Person、City、Province,根据prefetch_related()的特性就得有4次SQL查询
 

SELECT `QSOptimize_order`.`id`, `QSOptimize_order`.`customer_id`, `QSOptimize_order`.`orderinfo`, `QSOptimize_order`.`time`
FROM `QSOptimize_order`
WHERE `QSOptimize_order`.`id` = 1 ;
 
SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`
FROM `QSOptimize_person`
WHERE `QSOptimize_person`.`id` IN (1);
 
SELECT (`QSOptimize_person_visitation`.`person_id`) AS `_prefetch_related_val`, `QSOptimize_city`.`id`,
`QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
FROM `QSOptimize_city`
INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`)
WHERE `QSOptimize_person_visitation`.`person_id` IN (1);
 
SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` IN (1, 2);
+----+-------------+---------------+---------------------+
| id | customer_id | orderinfo  | time    |
+----+-------------+---------------+---------------------+
| 1 |   1 | Info of Order | 2014-08-10 17:05:48 |
+----+-------------+---------------+---------------------+
1 row in set (0.00 sec)
 
+----+-----------+----------+-------------+-----------+
| id | firstname | lastname | hometown_id | living_id |
+----+-----------+----------+-------------+-----------+
| 1 | 张  | 三  |   3 |   1 |
+----+-----------+----------+-------------+-----------+
1 row in set (0.00 sec)
 
+-----------------------+----+--------+-------------+
| _prefetch_related_val | id | name | province_id |
+-----------------------+----+--------+-------------+
|      1 | 1 | 武汉市 |   1 |
|      1 | 2 | 广州市 |   2 |
|      1 | 3 | 十堰市 |   1 |
+-----------------------+----+--------+-------------+
3 rows in set (0.00 sec)
 
+----+--------+
| id | name |
+----+--------+
| 1 | 湖北省 |
| 2 | 广东省 |
+----+--------+
2 rows in set (0.00 sec)

更好的办法是先调用一次select_related()再调用prefetch_related(),最后再select_related()后面的表
 

>>> plist = Order.objects.select_related('customer').prefetch_related('customer__visitation__province').get(id=1)
>>> for city in plist.customer.visitation.all():
... print city.province.name
...

这样只会有3次SQL查询,Django会先做select_related,之后prefetch_related的时候会利用之前缓存的数据,从而避免了1次额外的SQL查询:

SELECT `QSOptimize_order`.`id`, `QSOptimize_order`.`customer_id`, `QSOptimize_order`.`orderinfo`, 
`QSOptimize_order`.`time`, `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, 
`QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id` 
FROM `QSOptimize_order` 
INNER JOIN `QSOptimize_person` ON (`QSOptimize_order`.`customer_id` = `QSOptimize_person`.`id`) 
WHERE `QSOptimize_order`.`id` = 1 ;
 
SELECT (`QSOptimize_person_visitation`.`person_id`) AS `_prefetch_related_val`, `QSOptimize_city`.`id`, 
`QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` 
FROM `QSOptimize_city` 
INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`) 
WHERE `QSOptimize_person_visitation`.`person_id` IN (1);
 
SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name` 
FROM `QSOptimize_province` 
WHERE `QSOptimize_province`.`id` IN (1, 2);
 
+----+-------------+---------------+---------------------+----+-----------+----------+-------------+-----------+
| id | customer_id | orderinfo  | time    | id | firstname | lastname | hometown_id | living_id |
+----+-------------+---------------+---------------------+----+-----------+----------+-------------+-----------+
| 1 |   1 | Info of Order | 2014-08-10 17:05:48 | 1 | 张  | 三  |   3 |   1 |
+----+-------------+---------------+---------------------+----+-----------+----------+-------------+-----------+
1 row in set (0.00 sec)
 
+-----------------------+----+--------+-------------+
| _prefetch_related_val | id | name | province_id |
+-----------------------+----+--------+-------------+
|      1 | 1 | 武汉市 |   1 |
|      1 | 2 | 广州市 |   2 |
|      1 | 3 | 十堰市 |   1 |
+-----------------------+----+--------+-------------+
3 rows in set (0.00 sec)
 
+----+--------+
| id | name |
+----+--------+
| 1 | 湖北省 |
| 2 | 广东省 |
+----+--------+
2 rows in set (0.00 sec)

值得注意的是,可以在调用prefetch_related之前调用select_related,并且Django会按照你想的去做:先select_related,然后利用缓存到的数据prefetch_related。然而一旦prefetch_related已经调用,select_related将不起作用。

 小结

  1.     因为select_related()总是在单次SQL查询中解决问题,而prefetch_related()会对每个相关表进行SQL查询,因此select_related()的效率通常比后者高。
  2.     鉴于第一条,尽可能的用select_related()解决问题。只有在select_related()不能解决问题的时候再去想prefetch_related()。
  3.     你可以在一个QuerySet中同时使用select_related()和prefetch_related(),从而减少SQL查询的次数。
  4.     只有prefetch_related()之前的select_related()是有效的,之后的将会被无视掉。
Python 相关文章推荐
Python合并多个装饰器小技巧
Apr 28 Python
python3 实现的人人影视网站自动签到
Jun 19 Python
Python实现动态加载模块、类、函数的方法分析
Jul 18 Python
python实现图书管理系统
Mar 12 Python
Django Admin实现三级联动的示例代码(省市区)
Jun 22 Python
python遍历文件夹找出文件夹后缀为py的文件方法
Oct 21 Python
Python面向对象之类的定义与继承用法示例
Jan 14 Python
python实现图片彩色转化为素描
Jan 15 Python
Django model select的多种用法详解
Jul 16 Python
浅析python标准库中的glob
Mar 13 Python
python re.match()用法相关示例
Jan 27 Python
pytorch查看网络参数显存占用量等操作
May 12 Python
用实例详解Python中的Django框架中prefetch_related()函数对数据库查询的优化
Apr 01 #Python
Python的Django框架中的select_related函数对QuerySet 查询的优化
Apr 01 #Python
简单的Python2.7编程初学经验总结
Apr 01 #Python
极简的Python入门指引
Apr 01 #Python
分析在Python中何种情况下需要使用断言
Apr 01 #Python
用Python制作简单的朴素基数估计器的教程
Apr 01 #Python
简单的编程0基础下Python入门指引
Apr 01 #Python
You might like
php去掉URL网址中带有PHPSESSID的配置方法
2014/07/08 PHP
curl和libcurl的区别简介
2015/07/01 PHP
Zend Framework自定义Helper类相关注意事项总结
2016/03/14 PHP
JavaScript使用cookie
2007/02/02 Javascript
CCPry JS类库 代码
2009/10/30 Javascript
jquery ajax属性async(同步异步)示例
2013/11/05 Javascript
jQuery点击自身以外地方关闭弹出层的简单实例
2013/12/24 Javascript
jquery实现页面虚拟键盘特效
2015/08/08 Javascript
jQuery操作复选框(CheckBox)的取值赋值实现代码
2017/01/10 Javascript
javascript 面向对象function详解及实例代码
2017/02/28 Javascript
H5上传本地图片并预览功能
2017/05/08 Javascript
使用JavaScript开发跨平台的桌面应用详解
2017/07/27 Javascript
ReactJs实现树形结构的数据显示的组件的示例
2017/08/18 Javascript
vue中的计算属性的使用和vue实例的方法示例
2017/12/04 Javascript
发布一款npm包帮助理解npm的使用
2019/01/03 Javascript
[15:15]教你分分钟做大人:狙击手
2014/10/30 DOTA
[02:17]DOTA2亚洲邀请赛 RAVE战队出场宣传片
2015/02/07 DOTA
Python中的作用域规则详解
2015/01/30 Python
Python函数式编程指南(二):从函数开始
2015/06/24 Python
python定义类self用法实例解析
2020/01/22 Python
使用Python打造一款间谍程序的流程分析
2020/02/21 Python
如何将anaconda安装配置的mmdetection环境离线拷贝到另一台电脑
2020/10/15 Python
详解用 python-docx 创建浮动图片
2021/01/24 Python
CSS3标注引用的出处和来源的方法
2020/02/25 HTML / CSS
Mio Skincare英国官网:身体紧致及孕期身体护理
2018/08/19 全球购物
荷兰度假屋租赁网站:Aan Zee
2020/02/28 全球购物
网络专业学生个人的自我评价
2013/12/16 职场文书
乡镇干部先进事迹材料
2014/02/03 职场文书
大学生先进事迹材料
2014/02/16 职场文书
综合测评个人总结
2015/03/03 职场文书
幼儿园食品安全责任书
2015/05/08 职场文书
毕业典礼致辞
2015/07/29 职场文书
2016春季校长开学典礼致辞
2015/11/26 职场文书
60句有关成长的名言
2019/09/04 职场文书
MySQL中in和exists区别详解
2021/06/03 MySQL
vite+vue3.0+ts+element-plus快速搭建项目的实现
2021/06/24 Vue.js