python神经网络Xception模型


Posted in Python onMay 06, 2022

Xception是继Inception后提出的对Inception v3的另一种改进,学一学总是好的

什么是Xception模型

Xception是谷歌公司继Inception后,提出的InceptionV3的一种改进模型,其改进的主要内容为采用depthwise separable convolution来替换原来Inception v3中的多尺寸卷积核特征响应操作。

在讲Xception模型之前,首先要讲一下什么是depthwise separable convolution(深度可分离卷积块)。

深度可分离卷积块由两个部分组成,分别是深度可分离卷积和1x1普通卷积,深度可分离卷积的卷积核大小一般是3x3的,便于理解的话我们可以把它当作是特征提取,1x1的普通卷积可以完成通道数的调整。

下图为深度可分离卷积块的结构示意图:

python神经网络Xception模型


深度可分离卷积块的目的是使用更少的参数来代替普通的3x3卷积。

我们可以进行一下普通卷积和深度可分离卷积块的对比:

假设有一个3×3大小的卷积层,其输入通道为16、输出通道为32。具体为,32个3×3大小的卷积核会遍历16个通道中的每个数据,最后可得到所需的32个输出通道,所需参数为16×32×3×3=4608个。

应用深度可分离卷积,用16个3×3大小的卷积核分别遍历16通道的数据,得到了16个特征图谱。在融合操作之前,接着用32个1×1大小的卷积核遍历这16个特征图谱,所需参数为16×3×3+16×32×1×1=656个。

可以看出来depthwise separable convolution可以减少模型的参数。

通俗地理解深度可分离卷积结构块,就是3x3的卷积核厚度只有一层,然后在输入张量上一层一层地滑动,每一次卷积完生成一个输出通道,当卷积完成后,再利用1x1的卷积调整厚度。

(视频中有些许错误,感谢zl960929的提醒,Xception使用的深度可分离卷积块SeparableConv2D也就是先深度可分离卷积再进行1x1卷积。)

对于Xception模型而言,其一共可以分为3个flow,分别是Entry flow、Middle flow、Exit flow;分为14个block,其中Entry flow中有4个、Middle flow中有8个、Exit flow中有2个。具体结构如下:

python神经网络Xception模型


其内部主要结构就是残差卷积网络搭配SeparableConv2D层实现一个个block,在Xception模型中,常见的两个block的结构如下。
这个主要在Entry flow和Exit flow中:

python神经网络Xception模型


这个主要在Middle flow中:

python神经网络Xception模型

Xception网络部分实现代码

#-------------------------------------------------------------#
#   Xception的网络部分
#-------------------------------------------------------------#
from keras.preprocessing import image

from keras.models import Model
from keras import layers
from keras.layers import Dense,Input,BatchNormalization,Activation,Conv2D,SeparableConv2D,MaxPooling2D
from keras.layers import GlobalAveragePooling2D,GlobalMaxPooling2D
from keras import backend as K
from keras.applications.imagenet_utils import decode_predictions


def Xception(input_shape = [299,299,3],classes=1000):


    img_input = Input(shape=input_shape)

    #--------------------------#
    # Entry flow
    #--------------------------#
    #--------------------#
    # block1
    #--------------------#
    # 299,299,3 -> 149,149,64
    x = Conv2D(32, (3, 3), strides=(2, 2), use_bias=False, name='block1_conv1')(img_input)
    x = BatchNormalization(name='block1_conv1_bn')(x)
    x = Activation('relu', name='block1_conv1_act')(x)
    x = Conv2D(64, (3, 3), use_bias=False, name='block1_conv2')(x)
    x = BatchNormalization(name='block1_conv2_bn')(x)
    x = Activation('relu', name='block1_conv2_act')(x)

    #--------------------#
    # block2
    #--------------------#
    # 149,149,64 -> 75,75,128
    residual = Conv2D(128, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x)
    residual = BatchNormalization()(residual)

    x = SeparableConv2D(128, (3, 3), padding='same', use_bias=False, name='block2_sepconv1')(x)
    x = BatchNormalization(name='block2_sepconv1_bn')(x)
    x = Activation('relu', name='block2_sepconv2_act')(x)
    x = SeparableConv2D(128, (3, 3), padding='same', use_bias=False, name='block2_sepconv2')(x)
    x = BatchNormalization(name='block2_sepconv2_bn')(x)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block2_pool')(x)
    x = layers.add([x, residual])

    #--------------------#
    # block3
    #--------------------#
    # 75,75,128 -> 38,38,256
    residual = Conv2D(256, (1, 1), strides=(2, 2),padding='same', use_bias=False)(x)
    residual = BatchNormalization()(residual)

    x = Activation('relu', name='block3_sepconv1_act')(x)
    x = SeparableConv2D(256, (3, 3), padding='same', use_bias=False, name='block3_sepconv1')(x)
    x = BatchNormalization(name='block3_sepconv1_bn')(x)
    x = Activation('relu', name='block3_sepconv2_act')(x)
    x = SeparableConv2D(256, (3, 3), padding='same', use_bias=False, name='block3_sepconv2')(x)
    x = BatchNormalization(name='block3_sepconv2_bn')(x)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block3_pool')(x)
    x = layers.add([x, residual])

    #--------------------#
    # block4
    #--------------------#
    # 38,38,256 -> 19,19,728
    residual = Conv2D(728, (1, 1), strides=(2, 2),padding='same', use_bias=False)(x)
    residual = BatchNormalization()(residual)

    x = Activation('relu', name='block4_sepconv1_act')(x)
    x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block4_sepconv1')(x)
    x = BatchNormalization(name='block4_sepconv1_bn')(x)
    x = Activation('relu', name='block4_sepconv2_act')(x)
    x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block4_sepconv2')(x)
    x = BatchNormalization(name='block4_sepconv2_bn')(x)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block4_pool')(x)
    x = layers.add([x, residual])

    #--------------------------#
    # Middle flow
    #--------------------------#
    #--------------------#
    # block5--block12
    #--------------------#
    # 19,19,728 -> 19,19,728
    for i in range(8):
        residual = x
        prefix = 'block' + str(i + 5)

        x = Activation('relu', name=prefix + '_sepconv1_act')(x)
        x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv1')(x)
        x = BatchNormalization(name=prefix + '_sepconv1_bn')(x)
        x = Activation('relu', name=prefix + '_sepconv2_act')(x)
        x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv2')(x)
        x = BatchNormalization(name=prefix + '_sepconv2_bn')(x)
        x = Activation('relu', name=prefix + '_sepconv3_act')(x)
        x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv3')(x)
        x = BatchNormalization(name=prefix + '_sepconv3_bn')(x)

        x = layers.add([x, residual])

    #--------------------------#
    # Exit flow
    #--------------------------#
    #--------------------#
    # block13
    #--------------------#
    # 19,19,728 -> 10,10,1024
    residual = Conv2D(1024, (1, 1), strides=(2, 2),
                      padding='same', use_bias=False)(x)
    residual = BatchNormalization()(residual)

    x = Activation('relu', name='block13_sepconv1_act')(x)
    x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block13_sepconv1')(x)
    x = BatchNormalization(name='block13_sepconv1_bn')(x)
    x = Activation('relu', name='block13_sepconv2_act')(x)
    x = SeparableConv2D(1024, (3, 3), padding='same', use_bias=False, name='block13_sepconv2')(x)
    x = BatchNormalization(name='block13_sepconv2_bn')(x)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block13_pool')(x)
    x = layers.add([x, residual])

    #--------------------#
    # block14
    #--------------------#
    # 10,10,1024 -> 10,10,2048
    x = SeparableConv2D(1536, (3, 3), padding='same', use_bias=False, name='block14_sepconv1')(x)
    x = BatchNormalization(name='block14_sepconv1_bn')(x)
    x = Activation('relu', name='block14_sepconv1_act')(x)

    x = SeparableConv2D(2048, (3, 3), padding='same', use_bias=False, name='block14_sepconv2')(x)
    x = BatchNormalization(name='block14_sepconv2_bn')(x)
    x = Activation('relu', name='block14_sepconv2_act')(x)

    x = GlobalAveragePooling2D(name='avg_pool')(x)
    x = Dense(classes, activation='softmax', name='predictions')(x)

    inputs = img_input

    model = Model(inputs, x, name='xception')

    model.load_weights("xception_weights_tf_dim_ordering_tf_kernels.h5")

    return model

图片预测

建立网络后,可以用以下的代码进行预测。

def preprocess_input(x):
    x /= 255.
    x -= 0.5
    x *= 2.
    return x


if __name__ == '__main__':
    model = Xception()

    img_path = 'elephant.jpg'
    img = image.load_img(img_path, target_size=(299, 299))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    print('Input image shape:', x.shape)

    preds = model.predict(x)
    print(np.argmax(preds))
    print('Predicted:', decode_predictions(preds))

预测所需的已经训练好的Xception模型可以在https://github.com/fchollet/deep-learning-models/releases下载。非常方便。

预测结果为:

Predicted: [[('n02504458', 'African_elephant', 0.47570863), ('n01871265', 'tusker', 0.3173351), ('n02504013', 'Indian_elephant', 0.030323735), ('n02963159', 'cardigan', 0.0007877756), ('n02410509', 'bison', 0.00075616257)]]

以上就是python神经网络Xception模型详解的详细内容,更多关于Xception模型的复现详解的资料请关注三水点靠木其它相关文章!


Tags in this post...

Python 相关文章推荐
Python的pycurl包用法简介
Nov 13 Python
Python内置函数delattr的具体用法
Nov 23 Python
python中matplotlib的颜色及线条控制的示例
Mar 16 Python
pytorch cnn 识别手写的字实现自建图片数据
May 20 Python
pandas将numpy数组写入到csv的实例
Jul 04 Python
通过实例了解Python str()和repr()的区别
Jan 17 Python
tensorflow estimator 使用hook实现finetune方式
Jan 21 Python
python字符串,元组,列表,字典互转代码实例详解
Feb 14 Python
python实现对变位词的判断方法
Apr 05 Python
Python3.7在anaconda里面使用IDLE编译器的步骤详解
Apr 29 Python
基于Python绘制个人足迹地图
Jun 01 Python
python连接手机自动搜集蚂蚁森林能量的实现代码
Feb 24 Python
Python使用永中文档转换服务
May 06 #Python
Python tensorflow卷积神经Inception V3网络结构
May 06 #Python
Python实现Matplotlib,Seaborn动态数据图
May 06 #Python
PYTHON InceptionV3模型的复现详解
代码复现python目标检测yolo3详解预测
讲解Python实例练习逆序输出字符串
May 06 #Python
python turtle绘图
May 04 #Python
You might like
PHP读取ACCESS数据到MYSQL的代码
2011/05/11 PHP
PHP mysql与mysqli事务使用说明 分享
2013/08/17 PHP
php利用cookies实现购物车的方法
2014/12/10 PHP
php邮件发送的两种方式
2020/04/28 PHP
WordPress中获取指定分类及其子分类下的文章数目
2015/12/31 PHP
Yii2搭建后台并实现rbac权限控制完整实例教程
2016/04/28 PHP
用js判断用户浏览器是否是XP SP2的IE6
2007/03/08 Javascript
jquery的$(document).ready()和onload的加载顺序
2010/05/26 Javascript
jquery实现文本框鼠标右击无效以及不能输入的代码
2010/11/05 Javascript
推荐5 个常用的JavaScript调试技巧
2015/01/08 Javascript
jQuery中closest和parents的区别分析
2015/05/07 Javascript
JS实现黑色风格的网页TAB选项卡效果代码
2015/10/09 Javascript
JavaScript中rem布局在react中的应用
2015/12/09 Javascript
js滚轮事件兼容性问题需要注意哪些
2016/11/15 Javascript
Nodejs基于LRU算法实现的缓存处理操作示例
2017/03/17 NodeJs
JavaScript解析及序列化JSON的方法实例分析
2019/01/04 Javascript
Vue代码整洁之去重方法整理
2019/08/06 Javascript
[06:53]2018DOTA2国际邀请赛寻真——勇于创新的Vici Gaming
2018/08/14 DOTA
python通过索引遍历列表的方法
2015/05/04 Python
Python实现监控程序执行时间并将其写入日志的方法
2015/06/30 Python
Python使用Beautiful Soup包编写爬虫时的一些关键点
2016/01/20 Python
python使用PIL给图片添加文字生成海报示例
2018/08/17 Python
详解查看Python解释器路径的两种方式
2020/10/15 Python
python包的导入方式总结
2021/03/02 Python
canvas实现手机的手势解锁的步骤详细
2020/03/16 HTML / CSS
ghd官网:英国ghd直发器品牌
2018/05/04 全球购物
美国酒店控股公司:Choice Hotels
2018/06/15 全球购物
中学教师实习自我鉴定
2013/09/28 职场文书
有针对性的求职自荐信
2013/11/14 职场文书
个人银行贷款担保书
2014/04/01 职场文书
《大海那边》教学反思
2014/04/09 职场文书
护理目标管理责任书
2014/07/25 职场文书
2015年物业管理工作总结
2015/04/23 职场文书
2016元旦主持人开场白
2015/12/03 职场文书
《落花生》教学反思
2016/02/16 职场文书
使用 CSS 轻松实现一些高频出现的奇形怪状按钮
2021/12/06 HTML / CSS