Python人工智能之混合高斯模型运动目标检测详解分析


Posted in Python onNovember 07, 2021

【人工智能项目】混合高斯模型运动目标检测

Python人工智能之混合高斯模型运动目标检测详解分析

本次工作主要对视频中运动中的人或物的边缘背景进行检测。
那么走起来瓷!!!

原视频

Python人工智能之混合高斯模型运动目标检测详解分析

高斯算法提取工作

import cv2
import numpy as np

# 高斯算法
class gaussian:
    def __init__(self):
        self.mean = np.zeros((1, 3))
        self.covariance = 0
        self.weight = 0;
        self.Next = None
        self.Previous = None

class Node:
    def __init__(self):
        self.pixel_s = None
        self.pixel_r = None
        self.no_of_components = 0
        self.Next = None

class Node1:
    def __init__(self):
        self.gauss = None
        self.no_of_comp = 0
        self.Next = None

covariance0 = 11.0
def Create_gaussian(info1, info2, info3):
    ptr = gaussian()
    if (ptr is not None):
        ptr.mean[1, 1] = info1
        ptr.mean[1, 2] = info2
        ptr.mean[1, 3] = info3
        ptr.covariance = covariance0
        ptr.weight = 0.002
        ptr.Next = None
        ptr.Previous = None

    return ptr

def Create_Node(info1, info2, info3):
    N_ptr = Node()
    if (N_ptr is not None):
        N_ptr.Next = None
        N_ptr.no_of_components = 1
        N_ptr.pixel_s = N_ptr.pixel_r = Create_gaussian(info1, info2, info3)

    return N_ptr

List_node = []
def Insert_End_Node(n):
    List_node.append(n)

List_gaussian = []
def Insert_End_gaussian(n):
    List_gaussian.append(n)

def Delete_gaussian(n):
    List_gaussian.remove(n);

class Process:
    def __init__(self, alpha, firstFrame):
        self.alpha = alpha
        self.background = firstFrame

    def get_value(self, frame):
        self.background = frame * self.alpha + self.background * (1 - self.alpha)
        return cv2.absdiff(self.background.astype(np.uint8), frame)

def denoise(frame):
    frame = cv2.medianBlur(frame, 5)
    frame = cv2.GaussianBlur(frame, (5, 5), 0)

    return frame

capture = cv2.VideoCapture('1.mp4')
ret, orig_frame = capture.read( )
if ret is True:
    value1 = Process(0.1, denoise(orig_frame))
    run = True
else:
    run = False

while (run):
    ret, frame = capture.read()
    value = False;
    if ret is True:
        cv2.imshow('input', denoise(frame))
        grayscale = value1.get_value(denoise(frame))
        ret, mask = cv2.threshold(grayscale, 15, 255, cv2.THRESH_BINARY)
        cv2.imshow('mask', mask)
        key = cv2.waitKey(10) & 0xFF
    else:
        break

    if key == 27:
        break

    if value == True:
        orig_frame = cv2.resize(orig_frame, (340, 260), interpolation=cv2.INTER_CUBIC)
        orig_frame = cv2.cvtColor(orig_frame, cv2.COLOR_BGR2GRAY)
        orig_image_row = len(orig_frame)
        orig_image_col = orig_frame[0]

        bin_frame = np.zeros((orig_image_row, orig_image_col))
        value = []

        for i in range(0, orig_image_row):
            for j in range(0, orig_image_col):
                N_ptr = Create_Node(orig_frame[i][0], orig_frame[i][1], orig_frame[i][2])
                if N_ptr is not None:
                    N_ptr.pixel_s.weight = 1.0
                    Insert_End_Node(N_ptr)
                else:
                    print("error")
                    exit(0)

        nL = orig_image_row
        nC = orig_image_col

        dell = np.array((1, 3));
        mal_dist = 0.0;
        temp_cov = 0.0;
        alpha = 0.002;
        cT = 0.05;
        cf = 0.1;
        cfbar = 1.0 - cf;
        alpha_bar = 1.0 - alpha;
        prune = -alpha * cT;
        cthr = 0.00001;
        var = 0.0
        muG = 0.0;
        muR = 0.0;
        muB = 0.0;
        dR = 0.0;
        dB = 0.0;
        dG = 0.0;
        rval = 0.0;
        gval = 0.0;
        bval = 0.0;

        while (1):
            duration3 = 0.0;
            count = 0;
            count1 = 0;
            List_node1 = List_node;
            counter = 0;
            duration = cv2.getTickCount( );
            for i in range(0, nL):
                r_ptr = orig_frame[i]
                b_ptr = bin_frame[i]

                for j in range(0, nC):
                    sum = 0.0;
                    sum1 = 0.0;
                    close = False;
                    background = 0;

                    rval = r_ptr[0][0];
                    gval = r_ptr[0][0];
                    bval = r_ptr[0][0];

                    start = List_node1[counter].pixel_s;
                    rear = List_node1[counter].pixel_r;
                    ptr = start;

                    temp_ptr = None;
                    if (List_node1[counter].no_of_component > 4):
                        Delete_gaussian(rear);
                        List_node1[counter].no_of_component = List_node1[counter].no_of_component - 1;

                    for k in range(0, List_node1[counter].no_of_component):
                        weight = List_node1[counter].weight;
                        mult = alpha / weight;
                        weight = weight * alpha_bar + prune;
                        if (close == False):
                            muR = ptr.mean[0];
                            muG = ptr.mean[1];
                            muB = ptr.mean[2];

                            dR = rval - muR;
                            dG = gval - muG;
                            dB = bval - muB;

                            var = ptr.covariance;

                            mal_dist = (dR * dR + dG * dG + dB * dB);

                            if ((sum < cfbar) and (mal_dist < 16.0 * var * var)):
                                background = 255;

                            if (mal_dist < (9.0 * var * var)):
                                weight = weight + alpha;
                                if mult < 20.0 * alpha:
                                    mult = mult;
                                else:
                                    mult = 20.0 * alpha;

                                close = True;

                                ptr.mean[0] = muR + mult * dR;
                                ptr.mean[1] = muG + mult * dG;
                                ptr.mean[2] = muB + mult * dB;
                                temp_cov = var + mult * (mal_dist - var);
                                if temp_cov < 5.0:
                                    ptr.covariance = 5.0
                                else:
                                    if (temp_cov > 20.0):
                                        ptr.covariance = 20.0
                                    else:
                                        ptr.covariance = temp_cov;

                                temp_ptr = ptr;

                        if (weight < -prune):
                            ptr = Delete_gaussian(ptr);
                            weight = 0;
                            List_node1[counter].no_of_component = List_node1[counter].no_of_component - 1;
                        else:
                            sum += weight;
                            ptr.weight = weight;

                        ptr = ptr.Next;

                    if (close == False):
                        ptr = gaussian( );
                        ptr.weight = alpha;
                        ptr.mean[0] = rval;
                        ptr.mean[1] = gval;
                        ptr.mean[2] = bval;
                        ptr.covariance = covariance0;
                        ptr.Next = None;
                        ptr.Previous = None;
                        Insert_End_gaussian(ptr);
                        List_gaussian.append(ptr);
                        temp_ptr = ptr;
                        List_node1[counter].no_of_components = List_node1[counter].no_of_components + 1;

                    ptr = start;
                    while (ptr != None):
                        ptr.weight = ptr.weight / sum;
                        ptr = ptr.Next;

                    while (temp_ptr != None and temp_ptr.Previous != None):
                        if (temp_ptr.weight <= temp_ptr.Previous.weight):
                            break;
                        else:
                            next = temp_ptr.Next;
                            previous = temp_ptr.Previous;
                            if (start == previous):
                                start = temp_ptr;
                                previous.Next = next;
                                temp_ptr.Previous = previous.Previous;
                                temp_ptr.Next = previous;
                            if (previous.Previous != None):
                                previous.Previous.Next = temp_ptr;
                            if (next != None):
                                next.Previous = previous;
                            else:
                                rear = previous;
                                previous.Previous = temp_ptr;

                        temp_ptr = temp_ptr.Previous;

                    List_node1[counter].pixel_s = start;
                    List_node1[counter].pixel_r = rear;
                    counter = counter + 1;

capture.release()
cv2.destroyAllWindows()

Python人工智能之混合高斯模型运动目标检测详解分析

createBackgroundSubtractorMOG2

  • 背景减法 (BS) 是一种常用且广泛使用的技术,用于通过使用静态相机生成前景蒙版(即,包含属于场景中运动物体的像素的二值图像)。
  • 顾名思义,BS 计算前景蒙版,在当前帧和背景模型之间执行减法运算,其中包含场景的静态部分,或者更一般地说,根据观察到的场景的特征,可以将所有内容视为背景。

Python人工智能之混合高斯模型运动目标检测详解分析

背景建模包括两个主要步骤:

  • 后台初始化;
  • 背景更新。

在第一步中,计算背景的初始模型,而在第二步中,更新该模型以适应场景中可能的变化。

import cv2

#构造VideoCapture对象
cap = cv2.VideoCapture('1.mp4')

# 创建一个背景分割器
# createBackgroundSubtractorMOG2()函数里,可以指定detectShadows的值
# detectShadows=True,表示检测阴影,反之不检测阴影。默认是true
fgbg  = cv2.createBackgroundSubtractorMOG2()
while True :
    ret, frame = cap.read() # 读取视频
    fgmask = fgbg.apply(frame) # 背景分割
    cv2.imshow('frame', fgmask) # 显示分割结果
    if cv2.waitKey(100) & 0xff == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()

Python人工智能之混合高斯模型运动目标检测详解分析

小结

点赞评论走起来,瓷们!!!

Python人工智能之混合高斯模型运动目标检测详解分析

到此这篇关于Python人工智能之混合高斯模型运动目标检测详解分析的文章就介绍到这了,更多相关Python 高斯模型运动目标检测内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
详细解析Python中的变量的数据类型
May 13 Python
在Django中管理Users和Permissions以及Groups的方法
Jul 23 Python
Python编程中归并排序算法的实现步骤详解
May 04 Python
pytorch 数据集图片显示方法
Jul 26 Python
Python的UTC时间转换讲解
Feb 26 Python
基于Python检测动态物体颜色过程解析
Dec 04 Python
python打印n位数“水仙花数”(实例代码)
Dec 25 Python
Python 实现数组相减示例
Dec 27 Python
python logging通过json文件配置的步骤
Apr 27 Python
python requests.get带header
May 05 Python
pycharm无法安装第三方库的问题及解决方法以scrapy为例(图解)
May 09 Python
详解Python调用系统命令的六种方法
Jan 28 Python
7个关于Python的经典基础案例
Nov 07 #Python
python机器学习创建基于规则聊天机器人过程示例详解
Python中Numpy和Matplotlib的基本使用指南
python模块与C和C++动态库相互调用实现过程示例
Nov 02 #Python
Qt自定义Plot实现曲线绘制的详细过程
Nov 02 #Python
Python 正则模块详情
Nov 02 #Python
Python 数据可视化之Bokeh详解
Nov 02 #Python
You might like
PHP遍历某个目录下的所有文件和子文件夹的实现代码
2013/06/28 PHP
php Session存储到Redis的方法
2013/11/04 PHP
教你在PHPStorm中配置Xdebug
2015/07/27 PHP
使用PHP实现生成HTML静态页面
2015/11/18 PHP
基于laravel where的高级使用方法
2019/10/10 PHP
网页禁用右键实现代码(JavaScript代码)
2009/10/29 Javascript
一个简单的js动画效果代码
2010/07/20 Javascript
分享一个自己写的table表格排序js插件(高效简洁)
2011/10/29 Javascript
商城常用滚动的焦点图效果代码简单实用
2013/03/28 Javascript
在JavaScript中操作时间之getUTCDate()方法的使用
2015/06/10 Javascript
js游戏人物上下左右跑步效果代码分享
2015/08/28 Javascript
微信企业号开发之微信考勤Cookies的使用
2015/09/11 Javascript
详解JavaScript基于面向对象之继承
2015/12/13 Javascript
jQuery中的通配符选择器使用总结
2016/05/30 Javascript
JavaScript操作 url 中 search 部分方法函数
2016/06/15 Javascript
JS实现获取图片大小和预览的方法完整实例【兼容IE和其它浏览器】
2017/04/24 Javascript
浅谈vue项目优化之页面的按需加载(vue+webpack)
2017/12/11 Javascript
JS实现秒杀倒计时特效
2020/01/02 Javascript
JS实现网页烟花动画效果
2020/03/10 Javascript
Javascript实现鼠标移入方向感知
2020/06/24 Javascript
[02:40]DOTA2英雄基础教程 炼金术士
2013/12/23 DOTA
[01:12:27]EG vs Secret 2018国际邀请赛淘汰赛BO3 第二场 8.22
2018/08/23 DOTA
Python中类型关系和继承关系实例详解
2015/05/25 Python
Python实现矩阵加法和乘法的方法分析
2017/12/19 Python
Python使用add_subplot与subplot画子图操作示例
2018/06/01 Python
Python 3 实现定义跨模块的全局变量和使用教程
2019/07/07 Python
Django 使用easy_thumbnails压缩上传的图片方法
2019/07/26 Python
英国女装网上商店:I Saw It First
2018/10/18 全球购物
客服服务心得体会
2013/12/30 职场文书
蛋糕店的商业计划书范文
2014/01/27 职场文书
打造高效课堂实施方案
2014/03/22 职场文书
《中国梦我的梦》大学生演讲稿
2014/08/20 职场文书
不尊敬老师检讨书范文
2014/11/19 职场文书
运动会开幕词
2015/01/28 职场文书
表扬信范文
2015/05/04 职场文书
oracle索引总结
2021/09/25 Oracle