基于Python绘制子图及子图刻度的变换等的问题


Posted in Python onMay 23, 2021

1、涉及到图的对比会用到子图形式展示

先看看效果

基于Python绘制子图及子图刻度的变换等的问题

2、绘制代码如下

accuracy_alexnet_clef = [78.05, 78.43, 78.65, 78.61, 78.69]
accuracy_resnet_clef  = [84.56, 84.84, 85.07, 85.01, 85.13]
accuracy_alexnet_office10 = [87.30, 87.57, 87.78, 87.72, 87.50]
accuracy_resnet_office10  = [96.31, 96.35, 96.62, 96.43, 96.15]
orders = ['2', '3', '5', '10', '20']
names = ['alexnet', 'resnet']
# 创建两幅子图
f, ax = plt.subplots(2,1,figsize=(6, 8))
# 第一根柱子偏移坐标
x = [i for i in range(len(orders))]
# 第二根柱子偏移坐标
x1 = [i + 0.35 for i in range(len(orders))]
# 两幅子图之间的间距
plt.subplots_adjust(wspace =0, hspace =0.4)
# 选择第一幅图
figure_1 = ax[0]
# 设置x轴偏移和标签
figure_1.set_xticks([i+0.15 for i in x])
figure_1.set_xticklabels(orders)
# 设置y轴的范围
figure_1.set_ylim(bottom=77,top=86)
# 绘制柱状图,x表示x轴内容,accuracy_alexnet_clef表示y轴的内容,alpha表示透明度,width表示柱子宽度
# label表示图列
figure_1.bar(x, accuracy_alexnet_clef, alpha=0.7, width = 0.35, facecolor = '#4c72b0', label='Alexnet')
figure_1.bar(x1, accuracy_resnet_clef, alpha=0.7, width = 0.35, facecolor = '#dd8452', label='Resnet')
figure_1.set_ylabel('Accuracy%') # 设置y轴的标签
figure_1.set_xlabel('Order') # 设置x轴的名称
figure_1.set_title('Alexnet') # 设置图一标题名称
figure_1.legend() # 显示图一的图例
# 选择第二幅图
figure_2 = ax[1]
figure_1.set_xticks([i+0.15 for i in x])
figure_1.set_xticklabels(orders)
figure_2.set_ylim(bottom=77,top=100)
figure_2.bar(x, accuracy_alexnet_office10,alpha=0.7,width = 0.35,facecolor = '#c44e52', label='Alexnet')
figure_2.bar(x1, accuracy_resnet_office10,alpha=0.7,width = 0.35,facecolor = '#5f9e6e', label='Alexnet')
# figure_2.bar(orders, accuracy_resnet_clef,alpha=0.7,width = 0.35,facecolor = '#dd8452')
figure_2.set_ylabel('Accuracy%')
figure_2.set_xlabel('Order')
figure_2.set_title('Resnet')
figure_2.legend()
f.suptitle('ImageCLEF_DA') # 设置总标题
plt.show()

补充:python使用matplotlib在一个图形中绘制多个子图以及一个子图中绘制多条动态折线问题

在讲解绘制多个子图之前先简单了解一下使用matplotlib绘制一个图,导入绘图所需库matplotlib并创建一个等间隔的列表x,将[0,2*pi]等分为50等份,绘制函数sin(x)。当没有给定x轴数值时,默认以下标作为x的值,如果x值确定,则绘图时写为plt.plot(x,y) 。

如若想要绘制一个图时写入标签,则写为plt.plot(x,y,label="figure1")。

from numpy import *
import matplotlib.pyplot as plt 
x = linspace(0, 2 * pi, 50)
plt.plot(sin(x))
plt.xlabel('x-label')
plt.ylabel('y-label', fontsize='large')
plt.title('title')

基于Python绘制子图及子图刻度的变换等的问题

以下先将整体代码插入,再分布讲解:

import numpy as np
import matplotlib.pyplot as plt 
from matplotlib.ticker import MultipleLocator, FormatStrFormatter 
def minmax_value(list1):
    minvalue=min(list1)
    maxvalue=max(list1)
    return minvalue,maxvalue
plt.figure(figsize=(16,14),dpi=98)
xmajorLocator = MultipleLocator(1) #将x主刻度标签设置为1的倍数
plt.rcParams['font.sans-serif']=['SimHei']  
plt.rcParams['axes.unicode_minus'] = False
p1 = plt.subplot(121)
p2 = plt.subplot(122)
#图中展示点的数量
pointcount=5
x=[i for i in range(20)]
print(x)
y1=[i**2 for i in range(20)]
y2=[i*4 for i in range(20)]
y3=[i*3+2 for i in range(20)]
y4=[i*4 for i in range(20)]
for i in range(len(x)-1):
    if i<pointcount:
        minx,maxx=minmax_value(x[:pointcount])
        minx,maxx=minmax_value(x[:pointcount])
        minyA,maxyA=minmax_value(y1[:pointcount])
        minyB,maxyB=minmax_value(y2[:pointcount])
        
        maxy1=max(maxyA,maxyB)
        miny1=min(minyA,minyB)
        p1.axis([minx,maxx,miny1,maxy1])
        p1.grid(True)
        A,=p1.plot(x[:pointcount],y1[:pointcount],"g-")
        B,=p1.plot(x[:pointcount],y2[:pointcount],"b-")
        #设置主刻度标签的位置,标签文本的格式
        p1.xaxis.set_major_locator(xmajorLocator)
        legend=p1.legend(handles=[A,B],labels=["图1","图2"])    
        
        
        minx,maxx=minmax_value(x[:pointcount])
        minx,maxx=minmax_value(x[:pointcount])
        minyA,maxyA=minmax_value(y3[:pointcount])
        minyB,maxyB=minmax_value(y4[:pointcount])
        
        maxy1=max(maxyA,maxyB)
        miny1=min(minyA,minyB)
        p2.axis([minx,maxx,miny1,maxy1])
        p2.grid(True)
        A,=p2.plot(x[:pointcount],y3[:pointcount],"r-")
        B,=p2.plot(x[:pointcount],y4[:pointcount],"y-")
        #设置主刻度标签的位置,标签文本的格式
        p2.xaxis.set_major_locator(xmajorLocator)
        legend=p2.legend(handles=[A,B],labels=["图3","图4"])  
    elif i>=pointcount:
        minx,maxx=minmax_value(x[i-pointcount:i])
        minx,maxx=minmax_value(x[i-pointcount:i])
        minyA,maxyA=minmax_value(y1[i-pointcount:i])
        minyB,maxyB=minmax_value(y2[i-pointcount:i])
        
        maxy1=max(maxyA,maxyB)
        miny1=min(minyA,minyB)
        p1.axis([minx,maxx,miny1,maxy1])
        p1.grid(True)
        A,=p1.plot(x[i-pointcount:i],y1[i-pointcount:i],"g-")
        B,=p1.plot(x[i-pointcount:i],y2[i-pointcount:i],"b-")
        #设置主刻度标签的位置,标签文本的格式
        p1.xaxis.set_major_locator(xmajorLocator)
        legend=p1.legend(handles=[A,B],labels=["图1","图2"])
        minx,maxx=minmax_value(x[i-pointcount:i])
        minx,maxx=minmax_value(x[i-pointcount:i])
        minyA,maxyA=minmax_value(y3[i-pointcount:i])
        minyB,maxyB=minmax_value(y4[i-pointcount:i])
        
        maxy1=max(maxyA,maxyB)
        miny1=min(minyA,minyB)
        p2.axis([minx,maxx,miny1,maxy1])
        p2.grid(True)
        A,=p2.plot(x[i-pointcount:i],y3[i-pointcount:i],"r-")
        B,=p2.plot(x[i-pointcount:i],y4[i-pointcount:i],"y-")
        #设置主刻度标签的位置,标签文本的格式
        p2.xaxis.set_major_locator(xmajorLocator)
        legend=p2.legend(handles=[A,B],labels=["图3","图4"])
    p1.set_xlabel("横轴属性名一",fontsize=14)
    p1.set_ylabel("纵轴属性名一",fontsize=14)
    p1.set_title("主题一",fontsize=18)
    
    p2.set_xlabel("横轴属性名二",fontsize=14)
    p2.set_ylabel("纵轴属性名二",fontsize=14)
    p2.set_title("主题二",fontsize=18)
    plt.pause(0.3)
    plt.tight_layout(pad=4, w_pad=4.0, h_pad=3.0)

运行结果为:

基于Python绘制子图及子图刻度的变换等的问题

1、导入库

import numpy as np
import matplotlib.pyplot as plt 
from matplotlib.ticker import MultipleLocator, FormatStrFormatter

2、由于绘图过程中多次使用获取最大最小值,将获取最大最小值写入函数,后面直接调用函数即可。

def minmax_value(list1):
    minvalue=min(list1)
    maxvalue=max(list1)
    return minvalue,maxvalue

3、

(1)创建自定义图像,并设置figured的长和宽以及dpi参数指定绘图对象的分辨率;

(2)设置x轴刻度的间隔;

(3)对本次绘图中的字体进行设置;

(4)在matplotlib下,一个figure对象可以包含多个子图(Axes),使用subplot()快速绘制。

plt.figure(figsize=(16,14),dpi=98)xmajorLocator = MultipleLocator(1)
plt.rcParams['font.sans-serif']=['SimHei']  plt.rcParams['axes.unicode_minus'] = False
 
p1 = plt.subplot(121)p2 = plt.subplot(122)

4、当数据量过多时,对数据一次性展示不能够达到对数据内部信息的解读。本例采用一次展示其中一部分数据,并动态的更新图片,于此同时,动态更新横纵坐标轴的取值范围。下面代码首先设置了每次展示点的数量,并获取了主题一中的所有数据值。根据x取值范围和值域y获取当前绘图过程中的横纵坐标取值范围,最后根据x,y的值进行绘图。

下面将先在一个子图上显示两条静态折现。当使用动态的折线图时,只需动态更新数据和横纵坐标的取值范围。总体代码中已经写出,下面不再赘述。

#图中展示点的数量
pointcount=5
x=[i for i in range(20)]
y1=[i**2 for i in range(20)]
y2=[i*4 for i in range(20)]
minx,maxx=minmax_value(x[:pointcount])
minyA,maxyA=minmax_value(y1[:pointcount])
minyB,maxyB=minmax_value(y2[:pointcount])
        
maxy1=max(maxyA,maxyB)
miny1=min(minyA,minyB)
p1.axis([minx,maxx,miny1,maxy1])
p1.grid(True)#绘图过程中出现的网格设置
A,=p1.plot(x[:pointcount],y1[:pointcount],"g-")
B,=p1.plot(x[:pointcount],y2[:pointcount],"b-")#设置主刻度标签的位置,标签文本的格式p1.xaxis.set_major_locator(xmajorLocator)legend=p1.legend(handles=[A,B],labels=["图1","图2"])

结果如下所示:

基于Python绘制子图及子图刻度的变换等的问题

5、设置边界,不设置边界经常会因为横纵轴的字体太大等其他原因导致横纵轴或者标题只能显示其中一部分。

plt.tight_layout(pad=4, w_pad=4.0, h_pad=3.0)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python下的subprocess模块的入门指引
Apr 16 Python
Python提取Linux内核源代码的目录结构实现方法
Jun 24 Python
python中range()与xrange()用法分析
Sep 21 Python
解决Python安装后pip不能用的问题
Jun 12 Python
mac安装scrapy并创建项目的实例讲解
Jun 13 Python
python 递归深度优先搜索与广度优先搜索算法模拟实现
Oct 22 Python
不归路系列:Python入门之旅-一定要注意缩进!!!(推荐)
Apr 16 Python
使用python接入微信聊天机器人
Mar 31 Python
python 字典访问的三种方法小结
Dec 05 Python
tensorflow 环境变量设置方式
Feb 06 Python
PyTorch中Tensor的数据类型和运算的使用
Sep 03 Python
python执行js代码的方法
May 13 Python
聊聊pytorch测试的时候为何要加上model.eval()
May 23 #Python
PyTorch 如何自动计算梯度
May 23 #Python
解决numpy和torch数据类型转化的问题
May 23 #Python
Python 用户输入和while循环的操作
May 23 #Python
解决Tkinter中button按钮未按却主动执行command函数的问题
May 23 #Python
python tkinter Entry控件的焦点移动操作
May 22 #Python
python3.7.2 tkinter entry框限定输入数字的操作
May 22 #Python
You might like
PHP中UNIX时间戳和日期间的转换与计算实例
2014/11/19 PHP
PHP文件操作方法汇总
2015/07/01 PHP
浅谈laravel框架sql中groupBy之后排序的问题
2019/10/17 PHP
phpQuery采集网页实现代码实例
2020/04/02 PHP
ASP SQL防注入的方法
2008/12/25 Javascript
JS Range HTML文档/文字内容选中、库及应用介绍
2011/05/12 Javascript
Node.js的MongoDB驱动Mongoose基本使用教程
2016/03/01 Javascript
深入理解JQuery中的事件与动画
2016/05/18 Javascript
JavaScript中的boolean布尔值使用学习及相关技巧讲解
2016/05/26 Javascript
又一款MVVM组件 构建自己的Vue组件(2)
2017/03/13 Javascript
Angular.js 4.x中表单Template-Driven Forms详解
2017/04/25 Javascript
Vue.js中 v-model 指令的修饰符详解
2018/12/03 Javascript
JavaScript实现Excel表格效果
2020/02/07 Javascript
原生javascript的ajax请求及后台PHP响应操作示例
2020/02/24 Javascript
[03:15]2014DOTA2国际邀请赛 专访国士无双信心满满
2014/07/12 DOTA
[01:12:08]LGD vs OG 2019国际邀请赛淘汰赛 胜者组 BO3 第一场 8.24
2019/09/10 DOTA
使用Python神器对付12306变态验证码
2016/01/05 Python
Python如何通过subprocess调用adb命令详解
2017/08/27 Python
Python排序搜索基本算法之归并排序实例分析
2017/12/08 Python
matplotlib绘图实例演示标记路径
2018/01/23 Python
Python中跳台阶、变态跳台阶与矩形覆盖问题的解决方法
2018/05/19 Python
使用Anaconda3建立虚拟独立的python2.7环境方法
2018/06/11 Python
基于python 微信小程序之获取已存在模板消息列表
2019/08/05 Python
Python 日期时间datetime 加一天,减一天,加减一小时一分钟,加减一年
2020/04/16 Python
Canvas绘制浮动球效果的示例
2017/12/29 HTML / CSS
英国最大的线上保健品零售商之一:Vitamin Planet
2016/12/01 全球购物
印度在线杂货店:bigbasket
2018/08/23 全球购物
丝绸和人造花卉、植物和树木:Nearly Natural
2018/11/28 全球购物
外贸采购员求职的自我评价
2013/11/26 职场文书
教师的实习自我鉴定
2013/12/17 职场文书
物业公司采购员岗位职责
2013/12/31 职场文书
学校读书活动总结
2014/06/30 职场文书
法院授权委托书范文
2014/08/02 职场文书
党的群众路线教育实践活动个人对照检查材料(企业)
2014/11/05 职场文书
店面出租协议书范本
2014/11/28 职场文书
MySQL系列之六 用户与授权
2021/07/02 MySQL