Python机器学习之基于Pytorch实现猫狗分类


Posted in Python onJune 08, 2021

一、环境配置

安装Anaconda

配置Pytorch

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torch
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torchvision

二、数据集的准备

1.数据集的下载

kaggle网站的数据集下载地址:
https://www.kaggle.com/lizhensheng/-2000

2.数据集的分类

将下载的数据集进行解压操作,然后进行分类
分类如下(每个文件夹下包括cats和dogs文件夹)

Python机器学习之基于Pytorch实现猫狗分类 

三、猫狗分类的实例

导入相应的库

# 导入库
import torch.nn.functional as F
import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel
 
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets

设置超参数

# 设置超参数
#每次的个数
BATCH_SIZE = 20
#迭代次数
EPOCHS = 10
#采用cpu还是gpu进行计算
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

图像处理与图像增强

# 数据预处理
 
transform = transforms.Compose([
    transforms.Resize(100),
    transforms.RandomVerticalFlip(),
    transforms.RandomCrop(50),
    transforms.RandomResizedCrop(150),
    transforms.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])

读取数据集和导入数据

# 读取数据
 
dataset_train = datasets.ImageFolder('E:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small\\train', transform)
 
print(dataset_train.imgs)
 
# 对应文件夹的label
 
print(dataset_train.class_to_idx)
 
dataset_test = datasets.ImageFolder('E:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small\\validation', transform)
 
# 对应文件夹的label
 
print(dataset_test.class_to_idx)
 
# 导入数据
 
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)
 
test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=True)

定义网络模型

# 定义网络
class ConvNet(nn.Module):
    def __init__(self):
        super(ConvNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, 3)
        self.max_pool1 = nn.MaxPool2d(2)
        self.conv2 = nn.Conv2d(32, 64, 3) 
        self.max_pool2 = nn.MaxPool2d(2) 
        self.conv3 = nn.Conv2d(64, 64, 3) 
        self.conv4 = nn.Conv2d(64, 64, 3) 
        self.max_pool3 = nn.MaxPool2d(2) 
        self.conv5 = nn.Conv2d(64, 128, 3) 
        self.conv6 = nn.Conv2d(128, 128, 3) 
        self.max_pool4 = nn.MaxPool2d(2) 
        self.fc1 = nn.Linear(4608, 512) 
        self.fc2 = nn.Linear(512, 1)
  
    def forward(self, x): 
        in_size = x.size(0) 
        x = self.conv1(x) 
        x = F.relu(x) 
        x = self.max_pool1(x) 
        x = self.conv2(x) 
        x = F.relu(x) 
        x = self.max_pool2(x) 
        x = self.conv3(x) 
        x = F.relu(x) 
        x = self.conv4(x) 
        x = F.relu(x) 
        x = self.max_pool3(x) 
        x = self.conv5(x) 
        x = F.relu(x) 
        x = self.conv6(x) 
        x = F.relu(x)
        x = self.max_pool4(x) 
        # 展开
        x = x.view(in_size, -1)
        x = self.fc1(x)
        x = F.relu(x) 
        x = self.fc2(x) 
        x = torch.sigmoid(x) 
        return x
 
modellr = 1e-4
 
# 实例化模型并且移动到GPU
 
model = ConvNet().to(DEVICE)
 
# 选择简单暴力的Adam优化器,学习率调低
 
optimizer = optim.Adam(model.parameters(), lr=modellr)

调整学习率

def adjust_learning_rate(optimizer, epoch):
 
    """Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
    modellrnew = modellr * (0.1 ** (epoch // 5)) 
    print("lr:",modellrnew) 
    for param_group in optimizer.param_groups: 
        param_group['lr'] = modellrnew

定义训练过程

# 定义训练过程
def train(model, device, train_loader, optimizer, epoch):
 
    model.train() 
    for batch_idx, (data, target) in enumerate(train_loader):
 
        data, target = data.to(device), target.to(device).float().unsqueeze(1)
 
        optimizer.zero_grad()
 
        output = model(data)
 
        # print(output)
 
        loss = F.binary_cross_entropy(output, target)
 
        loss.backward()
 
        optimizer.step()
 
        if (batch_idx + 1) % 10 == 0:
 
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
 
                epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),
 
                    100. * (batch_idx + 1) / len(train_loader), loss.item()))
# 定义测试过程
 
def val(model, device, test_loader):
 
    model.eval()
 
    test_loss = 0
 
    correct = 0
 
    with torch.no_grad():
 
        for data, target in test_loader:
 
            data, target = data.to(device), target.to(device).float().unsqueeze(1)
 
            output = model(data)
            # print(output)
            test_loss += F.binary_cross_entropy(output, target, reduction='mean').item()
            pred = torch.tensor([[1] if num[0] >= 0.5 else [0] for num in output]).to(device)
            correct += pred.eq(target.long()).sum().item()
 
        print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
            test_loss, correct, len(test_loader.dataset),
            100. * correct / len(test_loader.dataset)))

定义保存模型和训练

# 训练
for epoch in range(1, EPOCHS + 1):
 
    adjust_learning_rate(optimizer, epoch)
    train(model, DEVICE, train_loader, optimizer, epoch) 
    val(model, DEVICE, test_loader)
 
torch.save(model, 'E:\\Cat_And_Dog\\kaggle\\model.pth')

训练结果

Python机器学习之基于Pytorch实现猫狗分类 

四、实现分类预测测试

准备预测的图片进行测试

from __future__ import print_function, division
from PIL import Image
 
from torchvision import transforms
import torch.nn.functional as F
 
import torch
import torch.nn as nn
import torch.nn.parallel
# 定义网络
class ConvNet(nn.Module):
    def __init__(self):
        super(ConvNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, 3)
        self.max_pool1 = nn.MaxPool2d(2)
        self.conv2 = nn.Conv2d(32, 64, 3)
        self.max_pool2 = nn.MaxPool2d(2)
        self.conv3 = nn.Conv2d(64, 64, 3)
        self.conv4 = nn.Conv2d(64, 64, 3)
        self.max_pool3 = nn.MaxPool2d(2)
        self.conv5 = nn.Conv2d(64, 128, 3)
        self.conv6 = nn.Conv2d(128, 128, 3)
        self.max_pool4 = nn.MaxPool2d(2)
        self.fc1 = nn.Linear(4608, 512)
        self.fc2 = nn.Linear(512, 1)
 
    def forward(self, x):
        in_size = x.size(0)
        x = self.conv1(x)
        x = F.relu(x)
        x = self.max_pool1(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = self.max_pool2(x)
        x = self.conv3(x)
        x = F.relu(x)
        x = self.conv4(x)
        x = F.relu(x)
        x = self.max_pool3(x)
        x = self.conv5(x)
        x = F.relu(x)
        x = self.conv6(x)
        x = F.relu(x)
        x = self.max_pool4(x)
        # 展开
        x = x.view(in_size, -1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = torch.sigmoid(x)
        return x
# 模型存储路径
model_save_path = 'E:\\Cat_And_Dog\\kaggle\\model.pth'
 
# ------------------------ 加载数据 --------------------------- #
# Data augmentation and normalization for training
# Just normalization for validation
# 定义预训练变换
# 数据预处理
transform_test = transforms.Compose([
    transforms.Resize(100),
    transforms.RandomVerticalFlip(),
    transforms.RandomCrop(50),
    transforms.RandomResizedCrop(150),
    transforms.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
 
 
class_names = ['cat', 'dog']  # 这个顺序很重要,要和训练时候的类名顺序一致
 
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 
# ------------------------ 载入模型并且训练 --------------------------- #
model = torch.load(model_save_path)
model.eval()
# print(model)
 
image_PIL = Image.open('E:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small\\test\\cats\\cat.1500.jpg')
#
image_tensor = transform_test(image_PIL)
# 以下语句等效于 image_tensor = torch.unsqueeze(image_tensor, 0)
image_tensor.unsqueeze_(0)
# 没有这句话会报错
image_tensor = image_tensor.to(device)
 
out = model(image_tensor)
pred = torch.tensor([[1] if num[0] >= 0.5 else [0] for num in out]).to(device)
print(class_names[pred])

预测结果

Python机器学习之基于Pytorch实现猫狗分类
Python机器学习之基于Pytorch实现猫狗分类

实际训练的过程来看,整体看准确度不高。而经过测试发现,该模型只能对于猫进行识别,对于狗则会误判。

到此这篇关于Python机器学习之基于Pytorch实现猫狗分类的文章就介绍到这了,更多相关Pytorch实现猫狗分类内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python实现求最大公约数及判断素数的方法
May 26 Python
Python获取linux主机ip的简单实现方法
Apr 18 Python
再谈Python中的字符串与字符编码(推荐)
Dec 14 Python
Python实现的概率分布运算操作示例
Aug 14 Python
python用opencv批量截取图像指定区域的方法
Jan 24 Python
关于tf.nn.dynamic_rnn返回值详解
Jan 20 Python
Python数组并集交集补集代码实例
Feb 18 Python
Python bytes string相互转换过程解析
Mar 05 Python
Python实现疫情通定时自动填写功能(附代码)
May 27 Python
Python如何在循环内使用list.remove()
Jun 01 Python
关于pycharm 切换 python3.9 报错 ‘HTMLParser‘ object has no attribute ‘unescape‘ 的问题
Nov 24 Python
matplotlib运行时配置(Runtime Configuration,rc)参数rcParams解析
Jan 05 Python
Python中json.load()和json.loads()有哪些区别
python 爬取哔哩哔哩up主信息和投稿视频
Jun 07 #Python
OpenCV-Python直方图均衡化实现图像去雾
OpenCV-Python实现人脸磨皮算法
Python实现拼音转换
Python实现简繁体转换
在Python中如何使用yield
Jun 07 #Python
You might like
php5编程中的异常处理详细方法介绍
2008/07/29 PHP
简单谈谈favicon
2015/06/10 PHP
php实现SAE上使用storage上传与下载文件的方法
2015/06/29 PHP
PHP APP微信提现接口代码
2018/09/30 PHP
jQuery对象和DOM对象相互转化
2009/04/24 Javascript
jQuery学习笔记之jQuery的动画
2010/12/22 Javascript
jQuery 三击事件实现代码
2013/09/11 Javascript
对Web开发中前端框架与前端类库的一些思考
2015/03/27 Javascript
JavaScript实现点击按钮字体放大、缩小
2016/02/29 Javascript
JavaScript中两个字符串的匹配
2016/06/08 Javascript
js利用appendChild对标签进行排序的实现方法
2016/10/16 Javascript
jQuery模拟实现的select点击选择效果【附demo源码下载】
2016/11/09 Javascript
详解react服务端渲染(同构)的方法
2017/09/21 Javascript
jQuery中库的引用方法
2018/01/06 jQuery
react 创建单例组件的方法
2018/04/26 Javascript
微信小程序 网络通信实现详解
2019/07/23 Javascript
Node.js实现简单管理系统
2019/09/23 Javascript
openlayers4实现点动态扩散
2020/08/17 Javascript
[03:39]DOTA2英雄梦之声_第05期_幽鬼
2014/06/23 DOTA
基python实现多线程网页爬虫
2015/09/06 Python
Python多重继承的方法解析执行顺序实例分析
2018/05/26 Python
python按照多个条件排序的方法
2019/02/08 Python
面向对象学习之pygame坦克大战
2019/09/11 Python
python如何使用jt400.jar包代码实例
2019/12/20 Python
Python实现井字棋小游戏
2020/03/09 Python
python3 中时间戳、时间、日期的转换和加减操作
2020/07/14 Python
通过Django Admin+HttpRunner1.5.6实现简易接口测试平台
2020/11/11 Python
python 获取计算机的网卡信息
2021/02/18 Python
canvas拼图功能实现代码示例
2018/11/21 HTML / CSS
为您的家、后院、车库等在线购物:Spreetail
2019/06/17 全球购物
一封普通求职者的求职信
2013/11/20 职场文书
幼儿园六一儿童节主持节目串词
2014/03/21 职场文书
2015年留守儿童工作总结
2015/05/22 职场文书
《花钟》教学反思
2016/02/17 职场文书
css display table 自适应高度、宽度问题的解决
2021/05/07 HTML / CSS
通过Python把学姐照片做成拼图游戏
2022/02/15 Python